Datasets:
GEM
/

Modalities:
Text
ArXiv:
Libraries:
Datasets
License:
File size: 39,178 Bytes
8df0b33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
{
  "name": "TaTA",
  "summary": "Existing data-to-text generation datasets are mostly limited to English. Table-to-Text in African languages (TaTA) addresses this lack of data as the first large multilingual table-to-text dataset with a focus on African languages. TaTA was created by transcribing figures and accompanying text in bilingual reports by the Demographic and Health Surveys Program, followed by professional translation to make the dataset fully parallel. TaTA includes 8,700 examples in nine languages including four African languages (Hausa, Igbo, Swahili, and Yor\u00f9b\u00e1) and a zero-shot test language (Russian). \n\nYou can load the dataset via:\n```\nimport datasets\ndata = datasets.load_dataset('GEM/TaTA')\n```\nThe data loader can be found [here](https://huggingface.co/datasets/GEM/TaTA).",
  "sections": [
    {
      "title": "Dataset Overview",
      "level": 2,
      "subsections": [
        {
          "title": "Where to find the Data and its Documentation",
          "level": 3,
          "fields": [
            {
              "title": "Webpage",
              "level": 4,
              "content": "[Github](https://github.com/google-research/url-nlp)",
              "flags": [],
              "info": "What is the webpage for the dataset (if it exists)?",
              "scope": "telescope"
            },
            {
              "title": "Download",
              "level": 4,
              "content": "[Github](https://github.com/google-research/url-nlp)",
              "flags": [
                ""
              ],
              "info": "What is the link to where the original dataset is hosted?",
              "scope": "telescope"
            },
            {
              "title": "Paper",
              "level": 4,
              "content": "[ArXiv](https://arxiv.org/abs/2211.00142)",
              "flags": [
                ""
              ],
              "info": "What is the link to the paper describing the dataset (open access preferred)?",
              "scope": "telescope"
            },
            {
              "title": "BibTex",
              "level": 4,
              "content": "```\n@misc{gehrmann2022TaTA,\n  Author = {Sebastian Gehrmann and Sebastian Ruder and Vitaly Nikolaev and Jan A. Botha and Michael Chavinda and Ankur Parikh and Clara Rivera},\n  Title = {TaTa: A Multilingual Table-to-Text Dataset for African Languages},\n  Year = {2022},\n  Eprint = {arXiv:2211.00142},\n}\n```",
              "flags": [
                ""
              ],
              "info": "Provide the BibTex-formatted reference for the dataset. Please use the correct published version (ACL anthology, etc.) instead of google scholar created Bibtex.",
              "scope": "microscope"
            },
            {
              "title": "Contact Name",
              "level": 4,
              "content": "Sebastian Ruder",
              "flags": [
                "quick"
              ],
              "info": "If known, provide the name of at least one person the reader can contact for questions about the dataset.",
              "scope": "periscope"
            },
            {
              "title": "Contact Email",
              "level": 4,
              "content": "ruder@google.com",
              "flags": [
                ""
              ],
              "info": "If known, provide the email of at least one person the reader can contact for questions about the dataset.",
              "scope": "periscope"
            },
            {
              "title": "Has a Leaderboard?",
              "level": 4,
              "content": "yes",
              "flags": [
                ""
              ],
              "info": "Does the dataset have an active leaderboard?",
              "scope": "telescope"
            },
            {
              "title": "Leaderboard Link",
              "level": 4,
              "content": "[Github](https://github.com/google-research/url-nlp)",
              "flags": [
                ""
              ],
              "info": "Provide a link to the leaderboard.",
              "scope": "periscope"
            },
            {
              "title": "Leaderboard Details",
              "level": 4,
              "content": "The paper introduces a metric StATA which is trained on human ratings and which is used to rank approaches submitted to the leaderboard.",
              "flags": [
                ""
              ],
              "info": "Briefly describe how the leaderboard evaluates models.",
              "scope": "microscope"
            }
          ]
        },
        {
          "title": "Languages and Intended Use",
          "level": 3,
          "fields": [
            {
              "title": "Multilingual?",
              "level": 4,
              "content": "yes",
              "flags": [
                "quick"
              ],
              "info": "Is the dataset multilingual?",
              "scope": "telescope"
            },
            {
              "title": "Covered Languages",
              "level": 4,
              "content": "`English`, `Portuguese`, `Arabic`, `French`, `Hausa`, `Swahili (macrolanguage)`, `Igbo`, `Yoruba`, `Russian`",
              "flags": [
                "quick"
              ],
              "info": "What languages/dialects are covered in the dataset?",
              "scope": "telescope"
            },
            {
              "title": "Whose Language?",
              "level": 4,
              "content": "The language is taken from reports by the demographic and health surveys program.",
              "flags": [
                ""
              ],
              "info": "Whose language is in the dataset?",
              "scope": "periscope"
            },
            {
              "title": "License",
              "level": 4,
              "content": "cc-by-sa-4.0: Creative Commons Attribution Share Alike 4.0 International",
              "flags": [
                "quick"
              ],
              "info": "What is the license of the dataset?",
              "scope": "telescope"
            },
            {
              "title": "Intended Use",
              "level": 4,
              "content": "The dataset poses significant reasoning challenges and is thus meant as a way to asses the verbalization and reasoning capabilities of structure-to-text models.",
              "flags": [
                ""
              ],
              "info": "What is the intended use of the dataset?",
              "scope": "microscope"
            },
            {
              "title": "Primary Task",
              "level": 4,
              "content": "Data-to-Text",
              "flags": [
                ""
              ],
              "info": "What primary task does the dataset support?",
              "scope": "telescope"
            },
            {
              "title": "Communicative Goal",
              "level": 4,
              "content": "Summarize key information from a table in a single sentence.\n",
              "flags": [
                "quick"
              ],
              "info": "Provide a short description of the communicative goal of a model trained for this task on this dataset.",
              "scope": "periscope"
            }
          ]
        },
        {
          "title": "Credit",
          "level": 3,
          "fields": [
            {
              "title": "Curation Organization Type(s)",
              "level": 4,
              "content": "`industry`",
              "flags": [
                ""
              ],
              "info": "In what kind of organization did the dataset curation happen?",
              "scope": "telescope"
            },
            {
              "title": "Curation Organization(s)",
              "level": 4,
              "content": "Google Research",
              "flags": [
                ""
              ],
              "info": "Name the organization(s).",
              "scope": "periscope"
            },
            {
              "title": "Dataset Creators",
              "level": 4,
              "content": "Sebastian Gehrmann, Sebastian Ruder , Vitaly Nikolaev, Jan A. Botha, Michael Chavinda, Ankur Parikh, Clara Rivera",
              "flags": [
                ""
              ],
              "info": "Who created the original dataset? List the people involved in collecting the dataset and their affiliation(s).",
              "scope": "microscope"
            },
            {
              "title": "Funding",
              "level": 4,
              "content": "Google Research",
              "flags": [
                ""
              ],
              "info": "Who funded the data creation?",
              "scope": "microscope"
            },
            {
              "title": "Who added the Dataset to GEM?",
              "level": 4,
              "content": "Sebastian Gehrmann (Google Research)",
              "flags": [
                ""
              ],
              "info": "Who contributed to the data card and adding the dataset to GEM? List the people+affiliations involved in creating this data card and who helped integrate this dataset into GEM.",
              "scope": "microscope"
            }
          ]
        },
        {
          "title": "Dataset Structure",
          "level": 3,
          "fields": [
            {
              "title": "Data Fields",
              "level": 4,
              "content": "- `example_id`: The ID of the example. Each ID (e.g., `AB20-ar-1`) consists of three parts: the document ID, the language ISO 639-1 code, and the index of the table within the document.\n- `title`: The title of the table.\n- `unit_of_measure`: A description of the numerical value of the data. E.g., percentage of households with clean water.\n- `chart_type`: The kind of chart associated with the data. We consider the following (normalized) types: horizontal bar chart, map chart, pie graph, tables, line chart, pie chart, vertical chart type, line graph, vertical bar chart, and other.\n- `was_translated`: Whether the table was transcribed in the original language of the report or translated.\n- `table_data`: The table content is a JSON-encoded string of a two-dimensional list, organized by row, from left to right, starting from the top of the table. Number of items varies per table. Empty cells are given as empty string values in the corresponding table cell.\n- `table_text`: The sentences forming the description of each table are encoded as a JSON object. In the case of more than one sentence, these are separated by commas. Number of items varies per table.\n- `linearized_input`:  A single string that contains the table content separated by vertical bars, i.e., |. Including title, unit of measurement, and the content of each cell including row and column headers in between brackets, i.e., (Medium Empowerment, Mali, 17.9).",
              "flags": [
                ""
              ],
              "info": "List and describe the fields present in the dataset.",
              "scope": "telescope"
            },
            {
              "title": "Reason for Structure",
              "level": 4,
              "content": "The structure includes all available information for the infographics on which the dataset is based.",
              "flags": [],
              "info": "How was the dataset structure determined?",
              "scope": "microscope"
            },
            {
              "title": "How were labels chosen?",
              "level": 4,
              "content": "Annotators looked through English text to identify sentences that describe an infographic. They then identified the corresponding location of the parallel non-English document. All sentences were extracted.",
              "flags": [
                ""
              ],
              "info": "How were the labels chosen?",
              "scope": "microscope"
            },
            {
              "title": "Example Instance",
              "level": 4,
              "content": "```\n{\n    \"example_id\": \"FR346-en-39\",\n    \"title\": \"Trends in early childhood mortality rates\",\n    \"unit_of_measure\": \"Deaths per 1,000 live births for the 5-year period before the survey\",\n    \"chart_type\": \"Line chart\",\n    \"was_translated\": \"False\",\n    \"table_data\": \"[[\\\"\\\", \\\"Child mortality\\\", \\\"Neonatal mortality\\\", \\\"Infant mortality\\\", \\\"Under-5 mortality\\\"], [\\\"1990 JPFHS\\\", 5, 21, 34, 39], [\\\"1997 JPFHS\\\", 6, 19, 29, 34], [\\\"2002 JPFHS\\\", 5, 16, 22, 27], [\\\"2007 JPFHS\\\", 2, 14, 19, 21], [\\\"2009 JPFHS\\\", 5, 15, 23, 28], [\\\"2012 JPFHS\\\", 4, 14, 17, 21], [\\\"2017-18 JPFHS\\\", 3, 11, 17, 19]]\",\n    \"table_text\": [\n      \"neonatal, infant, child, and under-5 mortality rates for the 5 years preceding each of seven JPFHS surveys (1990 to 2017-18).\",\n      \"Under-5 mortality declined by half over the period, from 39 to 19 deaths per 1,000 live births.\",\n      \"The decline in mortality was much greater between the 1990 and 2007 surveys than in the most recent period.\",\n      \"Between 2012 and 2017-18, under-5 mortality decreased only modestly, from 21 to 19 deaths per 1,000 live births, and infant mortality remained stable at 17 deaths per 1,000 births.\"\n    ],\n    \"linearized_input\": \"Trends in early childhood mortality rates | Deaths per 1,000 live births for the 5-year period before the survey | (Child mortality, 1990 JPFHS, 5) (Neonatal mortality, 1990 JPFHS, 21) (Infant mortality, 1990 JPFHS, 34) (Under-5 mortality, 1990 JPFHS, 39) (Child mortality, 1997 JPFHS, 6) (Neonatal mortality, 1997 JPFHS, 19) (Infant mortality, 1997 JPFHS, 29) (Under-5 mortality, 1997 JPFHS, 34) (Child mortality, 2002 JPFHS, 5) (Neonatal mortality, 2002 JPFHS, 16) (Infant mortality, 2002 JPFHS, 22) (Under-5 mortality, 2002 JPFHS, 27) (Child mortality, 2007 JPFHS, 2) (Neonatal mortality, 2007 JPFHS, 14) (Infant mortality, 2007 JPFHS, 19) (Under-5 mortality, 2007 JPFHS, 21) (Child mortality, 2009 JPFHS, 5) (Neonatal mortality, 2009 JPFHS, 15) (Infant mortality, 2009 JPFHS, 23) (Under-5 mortality, 2009 JPFHS, 28) (Child mortality, 2012 JPFHS, 4) (Neonatal mortality, 2012 JPFHS, 14) (Infant mortality, 2012 JPFHS, 17) (Under-5 mortality, 2012 JPFHS, 21) (Child mortality, 2017-18 JPFHS, 3) (Neonatal mortality, 2017-18 JPFHS, 11) (Infant mortality, 2017-18 JPFHS, 17) (Under-5 mortality, 2017-18 JPFHS, 19)\"\n  }\n```",
              "flags": [
                ""
              ],
              "info": "Provide a JSON formatted example of a typical instance in the dataset.",
              "scope": "periscope"
            },
            {
              "title": "Data Splits",
              "level": 4,
              "content": "- `Train`: Training set, includes examples with 0 or more references.\n- `Validation`: Validation set, includes examples with 3 or more references.\n- `Test`: Test set, includes examples with 3 or more references.\n- `Ru`: Russian zero-shot set. Includes English and Russian examples (Russian is not includes in any of the other splits).",
              "flags": [
                ""
              ],
              "info": "Describe and name the splits in the dataset if there are more than one.",
              "scope": "periscope"
            },
            {
              "title": "Splitting Criteria",
              "level": 4,
              "content": "The same table across languages is always in the same split, i.e., if table X is in the test split in language A, it will also be in the test split in language B. In addition to filtering examples without transcribed table values, every example of the development and test splits has at least 3 references. \nFrom the examples that fulfilled these criteria, 100 tables were sampled for both development and test for a total of 800 examples each. A manual review process excluded a few tables in each set, resulting in a training set of 6,962 tables, a development set of 752 tables, and a test set of 763 tables.\n",
              "flags": [
                ""
              ],
              "info": "Describe any criteria for splitting the data, if used. If there are differences between the splits (e.g., if the training annotations are machine-generated and the dev and test ones are created by humans, or if different numbers of annotators contributed to each example), describe them here.",
              "scope": "microscope"
            },
            {
              "title": "",
              "level": 4,
              "content": "There are tables without references, without values, and others that are very large. The dataset is distributed as-is, but the paper describes multiple strategies to deal with data issues.",
              "flags": [
                ""
              ],
              "info": "What does an outlier of the dataset in terms of length/perplexity/embedding look like?",
              "scope": "microscope"
            }
          ]
        }
      ]
    },
    {
      "title": "Dataset in GEM",
      "level": 2,
      "subsections": [
        {
          "title": "Rationale for Inclusion in GEM",
          "level": 3,
          "fields": [
            {
              "title": "Why is the Dataset in GEM?",
              "level": 4,
              "content": "There is no other multilingual data-to-text dataset that is parallel over languages. Moreover, over 70% of references in the dataset require reasoning and it is thus of very high quality and challenging for models.",
              "flags": [
                ""
              ],
              "info": "What does this dataset contribute toward better generation evaluation and why is it part of GEM?",
              "scope": "microscope"
            },
            {
              "title": "Similar Datasets",
              "level": 4,
              "content": "yes",
              "flags": [
                ""
              ],
              "info": "Do other datasets for the high level task exist?",
              "scope": "telescope"
            },
            {
              "title": "Unique Language Coverage",
              "level": 4,
              "content": "yes",
              "flags": [
                ""
              ],
              "info": "Does this dataset cover other languages than other datasets for the same task?",
              "scope": "periscope"
            },
            {
              "title": "Difference from other GEM datasets",
              "level": 4,
              "content": "More languages, parallel across languages, grounded in infographics, not centered on Western entities or source documents",
              "flags": [
                ""
              ],
              "info": "What else sets this dataset apart from other similar datasets in GEM?",
              "scope": "microscope"
            },
            {
              "title": "Ability that the Dataset measures",
              "level": 4,
              "content": "reasoning, verbalization, content planning",
              "flags": [
                ""
              ],
              "info": "What aspect of model ability can be measured with this dataset?",
              "scope": "periscope"
            }
          ]
        },
        {
          "title": "GEM-Specific Curation",
          "level": 3,
          "fields": [
            {
              "title": "Modificatied for GEM?",
              "level": 4,
              "content": "no",
              "flags": [
                ""
              ],
              "info": "Has the GEM version of the dataset been modified in any way (data, processing, splits) from the original curated data?",
              "scope": "telescope"
            },
            {
              "title": "Additional Splits?",
              "level": 4,
              "content": "no",
              "flags": [
                ""
              ],
              "info": "Does GEM provide additional splits to the dataset?",
              "scope": "telescope"
            }
          ]
        },
        {
          "title": "Getting Started with the Task",
          "level": 3,
          "fields": [
            {
              "title": "Pointers to Resources",
              "level": 4,
              "content": "The background section of the [paper](https://arxiv.org/abs/2211.00142) provides a list of related datasets.",
              "flags": [
                ""
              ],
              "info": "Getting started with in-depth research on the task. Add relevant pointers to resources that researchers can consult when they want to get started digging deeper into the task.",
              "scope": "microscope"
            },
            {
              "title": "Technical Terms",
              "level": 4,
              "content": "- `data-to-text`: Term that refers to NLP tasks in which the input is structured information and the output is natural language.\n",
              "flags": [
                ""
              ],
              "info": "Technical terms used in this card and the dataset and their definitions",
              "scope": "microscope"
            }
          ]
        }
      ]
    },
    {
      "title": "Previous Results",
      "level": 2,
      "subsections": [
        {
          "title": "Previous Results",
          "level": 3,
          "fields": [
            {
              "title": "Metrics",
              "level": 4,
              "content": "`Other: Other Metrics`",
              "flags": [
                ""
              ],
              "info": "What metrics are typically used for this task?",
              "scope": "periscope"
            },
            {
              "title": "Other Metrics",
              "level": 4,
              "content": "`StATA`: A new metric associated with TaTA that is trained on human judgments and which has a much higher correlation with them.",
              "flags": [
                ""
              ],
              "info": "Definitions of other metrics",
              "scope": "periscope"
            },
            {
              "title": "Proposed Evaluation",
              "level": 4,
              "content": "The creators used a human evaluation that measured [attribution](https://arxiv.org/abs/2112.12870) and reasoning capabilities of various models. Based on these ratings, they trained a new metric and showed that existing metrics fail to measure attribution.",
              "flags": [
                ""
              ],
              "info": "List and describe the purpose of the metrics and evaluation methodology (including human evaluation) that the dataset creators used when introducing this task.",
              "scope": "microscope"
            },
            {
              "title": "Previous results available?",
              "level": 4,
              "content": "no",
              "flags": [
                ""
              ],
              "info": "Are previous results available?",
              "scope": "telescope"
            }
          ]
        }
      ]
    },
    {
      "title": "Dataset Curation",
      "level": 2,
      "subsections": [
        {
          "title": "Original Curation",
          "level": 3,
          "fields": [
            {
              "title": "Original Curation Rationale",
              "level": 4,
              "content": "The curation rationale is to create a multilingual data-to-text dataset that is high-quality and challenging.",
              "flags": [
                ""
              ],
              "info": "Original curation rationale",
              "scope": "telescope"
            },
            {
              "title": "Communicative Goal",
              "level": 4,
              "content": "The communicative goal is to describe a table in a single sentence.",
              "flags": [
                ""
              ],
              "info": "What was the communicative goal?",
              "scope": "periscope"
            },
            {
              "title": "Sourced from Different Sources",
              "level": 4,
              "content": "no",
              "flags": [
                ""
              ],
              "info": "Is the dataset aggregated from different data sources?",
              "scope": "telescope"
            }
          ]
        },
        {
          "title": "Language Data",
          "level": 3,
          "fields": [
            {
              "title": "How was Language Data Obtained?",
              "level": 4,
              "content": "`Found`",
              "flags": [
                ""
              ],
              "info": "How was the language data obtained?",
              "scope": "telescope"
            },
            {
              "title": "Where was it found?",
              "level": 4,
              "content": "`Single website`",
              "flags": [
                ""
              ],
              "info": "If found, where from?",
              "scope": "telescope"
            },
            {
              "title": "Language Producers",
              "level": 4,
              "content": "The language was produced by USAID as part of the Demographic and Health Surveys program (https://dhsprogram.com/).",
              "flags": [
                ""
              ],
              "info": "What further information do we have on the language producers?",
              "scope": "microscope"
            },
            {
              "title": "Topics Covered",
              "level": 4,
              "content": "The topics are related to fertility, family planning, maternal and child health, gender, and nutrition.",
              "flags": [
                ""
              ],
              "info": "Does the language in the dataset focus on specific topics? How would you describe them?",
              "scope": "periscope"
            },
            {
              "title": "Data Validation",
              "level": 4,
              "content": "validated by crowdworker",
              "flags": [
                ""
              ],
              "info": "Was the text validated by a different worker or a data curator?",
              "scope": "telescope"
            },
            {
              "title": "Was Data Filtered?",
              "level": 4,
              "content": "not filtered",
              "flags": [
                ""
              ],
              "info": "Were text instances selected or filtered?",
              "scope": "telescope"
            }
          ]
        },
        {
          "title": "Structured Annotations",
          "level": 3,
          "fields": [
            {
              "title": "Additional Annotations?",
              "level": 4,
              "content": "expert created",
              "flags": [
                "quick"
              ],
              "info": "Does the dataset have additional annotations for each instance?",
              "scope": "telescope"
            },
            {
              "title": "Number of Raters",
              "level": 4,
              "content": "11<n<50",
              "flags": [
                ""
              ],
              "info": "What is the number of raters",
              "scope": "telescope"
            },
            {
              "title": "Rater Qualifications",
              "level": 4,
              "content": "Professional annotator who is a fluent speaker of the respective language",
              "flags": [
                ""
              ],
              "info": "Describe the qualifications required of an annotator.",
              "scope": "periscope"
            },
            {
              "title": "Raters per Training Example",
              "level": 4,
              "content": "0",
              "flags": [
                ""
              ],
              "info": "How many annotators saw each training example?",
              "scope": "periscope"
            },
            {
              "title": "Raters per Test Example",
              "level": 4,
              "content": "1",
              "flags": [
                ""
              ],
              "info": "How many annotators saw each test example?",
              "scope": "periscope"
            },
            {
              "title": "Annotation Service?",
              "level": 4,
              "content": "yes",
              "flags": [
                ""
              ],
              "info": "Was an annotation service used?",
              "scope": "telescope"
            },
            {
              "title": "Which Annotation Service",
              "level": 4,
              "content": "`other`",
              "flags": [
                ""
              ],
              "info": "Which annotation services were used?",
              "scope": "periscope"
            },
            {
              "title": "Annotation Values",
              "level": 4,
              "content": "The additional annotations are for system outputs and references and serve to develop metrics for this task.",
              "flags": [
                ""
              ],
              "info": "Purpose and values for each annotation",
              "scope": "microscope"
            },
            {
              "title": "Any Quality Control?",
              "level": 4,
              "content": "validated by data curators",
              "flags": [
                ""
              ],
              "info": "Quality control measures?",
              "scope": "telescope"
            },
            {
              "title": "Quality Control Details",
              "level": 4,
              "content": "Ratings were compared to a small (English) expert-curated set of ratings to ensure high agreement. There were additional rounds of training and feedback to annotators to ensure high quality judgments.",
              "flags": [
                ""
              ],
              "info": "Describe the quality control measures that were taken.",
              "scope": "microscope"
            }
          ]
        },
        {
          "title": "Consent",
          "level": 3,
          "fields": [
            {
              "title": "Any Consent Policy?",
              "level": 4,
              "content": "yes",
              "flags": [
                ""
              ],
              "info": "Was there a consent policy involved when gathering the data?",
              "scope": "telescope"
            },
            {
              "title": "Other Consented Downstream Use",
              "level": 4,
              "content": "In addition to data-to-text generation, the dataset can be used for translation or multimodal research.",
              "flags": [
                ""
              ],
              "info": "What other downstream uses of the data did the original data creators and the data curators consent to?",
              "scope": "microscope"
            }
          ]
        },
        {
          "title": "Private Identifying Information (PII)",
          "level": 3,
          "fields": [
            {
              "title": "Contains PII?",
              "level": 4,
              "content": "no PII",
              "flags": [
                "quick"
              ],
              "info": "Does the source language data likely contain Personal Identifying Information about the data creators or subjects?",
              "scope": "telescope"
            },
            {
              "title": "Justification for no PII",
              "level": 4,
              "content": "The DHS program only publishes aggregate survey information and thus, no personal information is included.",
              "flags": [
                ""
              ],
              "info": "Provide a justification for selecting `no PII` above.",
              "scope": "periscope"
            }
          ]
        },
        {
          "title": "Maintenance",
          "level": 3,
          "fields": [
            {
              "title": "Any Maintenance Plan?",
              "level": 4,
              "content": "no",
              "flags": [
                ""
              ],
              "info": "Does the original dataset have a maintenance plan?",
              "scope": "telescope"
            }
          ]
        }
      ]
    },
    {
      "title": "Broader Social Context",
      "level": 2,
      "subsections": [
        {
          "title": "Previous Work on the Social Impact of the Dataset",
          "level": 3,
          "fields": [
            {
              "title": "Usage of Models based on the Data",
              "level": 4,
              "content": "no",
              "flags": [
                ""
              ],
              "info": "Are you aware of cases where models trained on the task featured in this dataset ore related tasks have been used in automated systems?",
              "scope": "telescope"
            }
          ]
        },
        {
          "title": "Impact on Under-Served Communities",
          "level": 3,
          "fields": [
            {
              "title": "Addresses needs of underserved Communities?",
              "level": 4,
              "content": "yes",
              "flags": [
                ""
              ],
              "info": "Does this dataset address the needs of communities that are traditionally underserved in language technology, and particularly language generation technology? Communities may be underserved for exemple because their language, language variety, or social or geographical context is underepresented in NLP and NLG resources (datasets and models).",
              "scope": "telescope"
            },
            {
              "title": "Details on how Dataset Addresses the Needs",
              "level": 4,
              "content": "The dataset is focusing on data about African countries and the languages included in the dataset are spoken in Africa. It aims to improve the representation of African languages in the NLP and NLG communities.",
              "flags": [
                ""
              ],
              "info": "Describe how this dataset addresses the needs of underserved communities.",
              "scope": "microscope"
            }
          ]
        },
        {
          "title": "Discussion of Biases",
          "level": 3,
          "fields": [
            {
              "title": "Any Documented Social Biases?",
              "level": 4,
              "content": "no",
              "flags": [
                ""
              ],
              "info": "Are there documented social biases in the dataset? Biases in this context are variations in the ways members of different social categories are represented that can have harmful downstream consequences for members of the more disadvantaged group.",
              "scope": "telescope"
            },
            {
              "title": "Are the Language Producers Representative of the Language?",
              "level": 4,
              "content": "The language producers for this dataset are those employed by the DHS program which is a US-funded program. While the data is focused on African countries, there may be implicit western biases in how the data is presented. ",
              "flags": [
                ""
              ],
              "info": "Does the distribution of language producers in the dataset accurately represent the full distribution of speakers of the language world-wide? If not, how does it differ?",
              "scope": "periscope"
            }
          ]
        }
      ]
    },
    {
      "title": "Considerations for Using the Data",
      "level": 2,
      "subsections": [
        {
          "title": "PII Risks and Liability",
          "level": 3,
          "fields": []
        },
        {
          "title": "Licenses",
          "level": 3,
          "fields": [
            {
              "title": "Copyright Restrictions on the Dataset",
              "level": 4,
              "content": "`open license - commercial use allowed`",
              "flags": [
                ""
              ],
              "info": "Based on your answers in the Intended Use part of the Data Overview Section, which of the following best describe the copyright and licensing status of the dataset?",
              "scope": "periscope"
            },
            {
              "title": "Copyright Restrictions on the Language Data",
              "level": 4,
              "content": "`open license - commercial use allowed`",
              "flags": [
                ""
              ],
              "info": "Based on your answers in the Language part of the Data Curation Section, which of the following best describe the copyright and licensing status of the underlying language data?",
              "scope": "periscope"
            }
          ]
        },
        {
          "title": "Known Technical Limitations",
          "level": 3,
          "fields": [
            {
              "title": "Technical Limitations",
              "level": 4,
              "content": "While tables were transcribed in the available languages, the majority of the tables were published in English as the first language. Professional translators were used to translate the data, which makes it plausible that some translationese exists in the data. Moreover, it was unavoidable to collect reference sentences that are only partially entailed by the source tables. ",
              "flags": [
                ""
              ],
              "info": "Describe any known technical limitations, such as spurrious correlations, train/test overlap, annotation biases, or mis-annotations, and cite the works that first identified these limitations when possible.",
              "scope": "microscope"
            },
            {
              "title": "Unsuited Applications",
              "level": 4,
              "content": "The domain of health reports includes potentially sensitive topics relating to reproduction, violence, sickness, and death. Perceived negative values could be used to amplify stereotypes about people from the respective regions or countries. The intended academic use of this dataset is to develop and evaluate models that neutrally report the content of these tables but not use the outputs to make value judgments, and these applications are thus discouraged.",
              "flags": [
                ""
              ],
              "info": "When using a model trained on this dataset in a setting where users or the public may interact with its predictions, what are some pitfalls to look out for? In particular, describe some applications of the general task featured in this dataset that its curation or properties make it less suitable for.",
              "scope": "microscope"
            }
          ]
        }
      ]
    }
  ],
  "website": "[Github](https://github.com/google-research/url-nlp)",
  "paper": "[ArXiv](https://arxiv.org/abs/2211.00142)",
  "authors": "Sebastian Gehrmann, Sebastian Ruder , Vitaly Nikolaev, Jan A. Botha, Michael Chavinda, Ankur Parikh, Clara Rivera"
}