Datasets:
GEM
/

Languages:
English
License:
File size: 7,672 Bytes
ce90d54
 
 
 
 
 
00fd900
 
 
 
 
 
 
 
 
 
 
 
 
 
ce90d54
 
 
 
 
 
 
1c10c7d
 
 
22c2550
ce90d54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22c2550
ce90d54
 
 
 
13d678c
ce90d54
 
 
 
 
 
 
 
22c2550
ce90d54
 
 
 
 
 
 
22c2550
 
ce90d54
 
 
 
 
 
 
1c10c7d
ce90d54
 
 
 
22c2550
 
 
 
 
 
 
 
ce90d54
22c2550
ce90d54
 
22c2550
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce90d54
 
 
 
 
 
 
22c2550
ce90d54
 
13d678c
ce90d54
ee69481
ce90d54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1073aa7
a985f6d
 
 
22c2550
 
 
a985f6d
22c2550
 
 
 
 
a985f6d
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import json
import os

import datasets

_CITATION = """\
@inproceedings{narayan-etal-2018-dont,
    title = "Don{'}t Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization",
    author = "Narayan, Shashi  and
      Cohen, Shay B.  and
      Lapata, Mirella",
    booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
    month = oct # "-" # nov,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D18-1206",
    doi = "10.18653/v1/D18-1206",
    pages = "1797--1807",
    abstract = "We introduce {``}extreme summarization{''}, a new single-document summarization task which does not favor extractive strategies and calls for an abstractive modeling approach. The idea is to create a short, one-sentence news summary answering the question {``}What is the article about?{''}. We collect a real-world, large-scale dataset for this task by harvesting online articles from the British Broadcasting Corporation (BBC). We propose a novel abstractive model which is conditioned on the article{'}s topics and based entirely on convolutional neural networks. We demonstrate experimentally that this architecture captures long-range dependencies in a document and recognizes pertinent content, outperforming an oracle extractive system and state-of-the-art abstractive approaches when evaluated automatically and by humans.",
}
"""

_DESCRIPTION = """\
This is the XSUM subset of the GEM benchmark.
"""
_URLs = {
    "data": "http://bollin.inf.ed.ac.uk/public/direct/XSUM-EMNLP18-Summary-Data-Original.tar.gz",
    "splits": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_xsum_confidence_0.8.json",
    "challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/xsum.zip",
}

_XSUM_REMOVE_LINES = set(
    [
        "Share this with\n",
        "Email\n",
        "Facebook\n",
        "Messenger\n",
        "Twitter\n",
        "Pinterest\n",
        "WhatsApp\n",
        "Linkedin\n",
        "LinkedIn\n",
        "Copy this link\n",
        "These are external links and will open in a new window\n",
    ]
)


class Xsum(datasets.GeneratorBasedBuilder):

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="xsum",
            version=datasets.Version("1.0.0"),
            description="",
        )
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "gem_id": datasets.Value("string"),
                    "gem_parent_id": datasets.Value("string"),
                    "xsum_id": datasets.Value("string"),
                    "document": datasets.Value("string"),
                    "target": datasets.Value("string"),
                    "references": [datasets.Value("string")],
                }
            ),
            supervised_keys=None,
            homepage="",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        dl_dir = dl_manager.download_and_extract(_URLs)
        challenge_sets = [
            ("challenge_train_sample", "train_xsum_RandomSample500.json"),
            ("challenge_validation_sample", "validation_xsum_RandomSample500.json"),
            ("challenge_test_backtranslation", "test_xsum_BackTranslation500.json"),
            (
                "challenge_test_bfp_02",
                "test_xsum_ButterFingersPerturbation_p=0.02_500.json",
            ),
            (
                "challenge_test_bfp_05",
                "test_xsum_ButterFingersPerturbation_p=0.05_500.json",
            ),
            ("challenge_test_nopunc", "test_xsum_WithoutPunctuation500.json"),
            ("challenge_test_covid", f"en_test_covid19.jsonl"),
        ]
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": dl_dir["splits"],
                    "split": "train",
                    "filepaths": os.path.join(dl_dir["data"], "bbc-summary-data"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": dl_dir["splits"],
                    "split": "validation",
                    "filepaths": os.path.join(dl_dir["data"], "bbc-summary-data"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": dl_dir["splits"],
                    "split": "test",
                    "filepaths": os.path.join(dl_dir["data"], "bbc-summary-data"),
                },
            ),
        ] + [
            datasets.SplitGenerator(
                name=challenge_split,
                gen_kwargs={
                    "filepath": os.path.join(dl_dir["challenge_set"], "xsum", filename),
                    "split": challenge_split,
                },
            )
            for challenge_split, filename in challenge_sets
        ]

    def _generate_examples(self, filepath, split, filepaths=None):
        """Yields examples."""
        if "challenge" in split:
            if "covid" in split:
                with open(filepath, encoding="utf-8") as f:
                    id_ = -1
                    for line in f:
                        data = json.loads(line)
                        id_ += 1
                        yield id_, {
                            "gem_id": f"{self.config.name}-{split}-{id_}",
                            "gem_parent_id": f"{self.config.name}-{split}-{id_}",
                            "xsum_id": data["url"],
                            "document": data["text"],
                            "target": data["summary"],
                            "references": [] if split == "train" else [data["summary"]],
                        }
            else:
                exples = json.load(open(filepath, encoding="utf-8"))
                if isinstance(exples, dict):
                    assert len(exples) == 1, "multiple entries found"
                    exples = list(exples.values())[0]
                for id_, exple in enumerate(exples):
                    exple["gem_parent_id"] = exple["gem_id"]
                    exple["gem_id"] = f"{self.config.name}-{split}-{id_}"
                    yield id_, exple
        else:
            with open(filepath, "r", encoding="utf-8") as f:
                split_ids = json.load(f)
            for id_, i in enumerate(split_ids[split]):
                with open(
                    os.path.join(filepaths, i + ".summary"), "r", encoding="utf-8"
                ) as f:
                    text = "".join(
                        [
                            line
                            for line in f.readlines()
                            if line not in _XSUM_REMOVE_LINES and line.strip()
                        ]
                    )
                    segs = text.split("[SN]")
                    yield id_, {
                        "gem_id": f"{self.config.name}-{split}-{id_}",
                        "gem_parent_id": f"{self.config.name}-{split}-{id_}",
                        "xsum_id": i,
                        "document": segs[8].strip(),
                        "target": segs[6].strip(),
                        "references": [] if split == "train" else [segs[6].strip()],
                    }