File size: 3,379 Bytes
3367790 e59ebfe c46d539 e59ebfe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
---
license: apache-2.0
---
# Dataset Name: Dataset for ASR Speaker-Tagging Corrections (Speaker Diarization)
## Description
- This dataset is pairs of erroneous ASR output and speaker tagging, which are generated from a ASR system and speaker diarization system.
Each source erroneous transcription is paired with human-annotated transcription, which has correct transcription and speaker tagging.
- [SEGment-wise Long-form Speech Transcription annotation](#segment-wise-long-form-speech-transcription-annotation-seglst) (`SegLST`), the file format used in the [CHiME challenges](https://www.chimechallenge.org)
Example) `session_ge1nse2c.seglst.json`
```
[
...
{
"session_id": "session_ge1nse2c",
"words": "well that is the problem we have erroneous transcript and speaker tagging we want to correct it using large language models",
"start_time": 181.88,
"end_time": 193.3,
"speaker": "speaker1"
},
{
"session_id": "session_ge1nse2c",
"words": "it seems like a really interesting problem I feel that we can start with very simple methods",
"start_time": 194.48,
"end_time": 205.03,
"speaker": "speaker2"
},
...
]
```
## Structure
### Data Split
The dataset is divided into training and test splits:
- Development Data: 142 entries
- 2 to 4 speakers in each session
- Approximately 10 ~ 40 mins of recordings
- Evaluation Data: 104 entries
- 2 to 4 speakers in each session
- Approximately 10 ~ 40 mins of recordings
### Keys (items)
- `session_id`: "session_ge1nse2c",
- `words`: Transcription corresponding to t
- `start_time`: Start time in second.
- `end_time`: End time in second.
- `speaker`: Speaker tagging in string "speaker\<N\>"
### Source Datasets
The dataset combines entries from various sources:
- **Development Sources**:
- `dev`: 142 sessions
- **Evaluation Sources**:
- `eval`: 104 Sessions
## Access
The dataset can be accessed and downloaded through the HuggingFace Datasets library.
## Evaluation
This dataset can be evaluated by [MeetEval Software](https://github.com/fgnt/meeteval)
### From PyPI
```
pip install meeteval
```
### From source
```
git clone https://github.com/fgnt/meeteval
pip install -e ./meeteval
```
### Evaluate the corrected segLST files:
```
python -m meeteval.wer cpwer -h err_source_text/dev/session_ge1nse2c.json -r ref_annotate_text/dev/session_ge1nse2c.json
```
Or after installation, you can use the following command alternatively.
```
meeteval-wer cpwer -h err_source_text/dev/session_ge1nse2c.json -r ref_annotate_text/dev/session_ge1nse2c.json
```
### References
```bib
@inproceedings{park2024enhancing,
title={Enhancing speaker diarization with large language models: A contextual beam search approach},
author={Park, Tae Jin and Dhawan, Kunal and Koluguri, Nithin and Balam, Jagadeesh},
booktitle={ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={10861--10865},
year={2024},
organization={IEEE}
}
```
```bib
@InProceedings{MeetEval23,
title={MeetEval: A Toolkit for Computation of Word Error Rates for Meeting Transcription Systems},
author={von Neumann, Thilo and Boeddeker, Christoph and Delcroix, Marc and Haeb-Umbach, Reinhold},
booktitle={CHiME-2023 Workshop, Dublin, England},
year={2023}
}
``` |