--- dataset_info: features: - name: seqs dtype: string - name: labels dtype: float64 splits: - name: train num_bytes: 2933951 num_examples: 6837 - name: valid num_bytes: 217038 num_examples: 498 - name: test num_bytes: 204262 num_examples: 469 download_size: 2178499 dataset_size: 3355251 configs: - config_name: default data_files: - split: train path: data/train-* - split: valid path: data/valid-* - split: test path: data/test-* --- [DLKcat](https://github.com/SysBioChalmers/DLKcat) (BRENDA and SABIO-RK) with splits from [Biomap](https://huggingface.co/datasets/Bo1015/enzyme_catalytic_efficiency), and repeated and short sequences removed. Enzymes with multiple reactions have their kcat averaged. The kcat is log10 normalized, so the unit is log10(1/s). However, because it is averaged over reactions and also reaction ambiguous, it is really just a general proxy for catalytic rate. Higher is faster. Processing: ``` import pandas as pd from datasets import Dataset, DatasetDict, concatenate_datasets def process_dataset(dataset_dict): precedence = ['train', 'valid', 'test'] # Add a 'split' column to each dataset for split in dataset_dict.keys(): dataset_dict[split] = dataset_dict[split].add_column('split', [split]*len(dataset_dict[split])) # Concatenate all splits into one dataset all_data = concatenate_datasets([dataset_dict[split] for split in dataset_dict.keys()]) # Convert to pandas DataFrame df = all_data.to_pandas() # Remove sequences with length less than 50 df['seq_length'] = df['seqs'].apply(len) df = df[df['seq_length'] >= 50] # Group by 'seqs' to find duplicates and average the labels def aggregate_group(group): avg_label = group['labels'].mean() # Assign the sequence to the highest-precedence split it appears in for p in precedence: if p in group['split'].values: selected_split = p break return pd.Series({'labels': avg_label, 'split': selected_split}) df_grouped = df.groupby('seqs').apply(aggregate_group).reset_index() # Split the DataFrame back into the original splits without overlapping sequences new_dataset_dict = DatasetDict() for split in precedence: df_split = df_grouped[df_grouped['split'] == split] new_dataset_dict[split] = Dataset.from_pandas(df_split[['seqs', 'labels']], preserve_index=False) return new_dataset_dict ``` From [DLKcat paper](https://www.nature.com/articles/s41929-022-00798-z) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62f2bd3bdb7cbd214b658c48/bC5PQ_O9_xKZzYEIYxuEM.png)