File size: 7,643 Bytes
46e8818 2bb73b8 62c0a9b 46e8818 62c0a9b 46e8818 90e803b 46e8818 68f1179 46e8818 62c0a9b 46e8818 62c0a9b 46e8818 90e803b 46e8818 90e803b 62c0a9b 46e8818 62c0a9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The Visual Question Answering (VQA) dataset preprocessed for LXMERT."""
import base64
import csv
import json
import os
import sys
import datasets
import numpy as np
csv.field_size_limit(sys.maxsize)
_CITATION = """\
@inproceedings{antol2015vqa,
title={Vqa: Visual question answering},
author={Antol, Stanislaw and Agrawal, Aishwarya and Lu, Jiasen and Mitchell, Margaret and Batra, Dhruv and Zitnick, C Lawrence and Parikh, Devi},
booktitle={Proceedings of the IEEE international conference on computer vision},
pages={2425--2433},
year={2015}
}
"""
_DESCRIPTION = """\
VQA is a new dataset containing open-ended questions about images.
These questions require an understanding of vision, language and commonsense knowledge to answer.
"""
_URLS = {
"train": "https://nlp.cs.unc.edu/data/lxmert_data/vqa/train.json",
"train_feat": "https://nlp.cs.unc.edu/data/lxmert_data/mscoco_imgfeat/train2014_obj36.zip",
"valid": "https://nlp.cs.unc.edu/data/lxmert_data/vqa/valid.json",
"valid_feat": "https://nlp.cs.unc.edu/data/lxmert_data/mscoco_imgfeat/val2014_obj36.zip",
"test": "https://nlp.cs.unc.edu/data/lxmert_data/vqa/test.json",
"test_feat": "https://nlp.cs.unc.edu/data/lxmert_data/mscoco_imgfeat/test2015_obj36.zip",
"ans2label": "https://raw.githubusercontent.com/airsplay/lxmert/master/data/vqa/trainval_ans2label.json",
}
_TRAIN_FEAT_PATH = "train2014_obj36.tsv"
_VALID_FEAT_PATH = "mscoco_imgfeat/val2014_obj36.tsv"
_TEST_FEAT_PATH = "mscoco_imgfeat/test2015_obj36.tsv"
FIELDNAMES = [
"img_id", "img_h", "img_w", "objects_id", "objects_conf", "attrs_id", "attrs_conf", "num_boxes", "boxes", "features"
]
_SHAPE_FEATURES = (36, 2048)
_SHAPE_BOXES = (36, 4)
class VqaV2Lxmert(datasets.GeneratorBasedBuilder):
"""The VQAv2.0 dataset preprocessed for LXMERT, with the objects features detected by a Faster RCNN replacing the
raw images."""
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="vqa", version=datasets.Version("2.0.0"), description="VQA version 2 dataset."),
]
def _info(self):
features = datasets.Features(
{
"question": datasets.Value("string"),
"question_type": datasets.Value("string"),
"question_id": datasets.Value("int32"),
"image_id": datasets.Value("string"),
"features": datasets.Array2D(_SHAPE_FEATURES, dtype="float32"),
"normalized_boxes": datasets.Array2D(_SHAPE_BOXES, dtype="float32"),
"answer_type": datasets.Value("string"),
"label": datasets.Sequence(
{
"ids": datasets.ClassLabel(num_classes=3129),
"weights": datasets.Value("float32"),
}
),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
dl_dir = dl_manager.download_and_extract(_URLS)
self.ans2label = json.load(open(dl_dir["ans2label"]))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": dl_dir["train"], "imgfeat": os.path.join(dl_dir["train_feat"], _TRAIN_FEAT_PATH)},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": dl_dir["valid"], "imgfeat": os.path.join(dl_dir["valid_feat"], _VALID_FEAT_PATH)},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": dl_dir["test"], "imgfeat": os.path.join(dl_dir["test_feat"], _TEST_FEAT_PATH), "labeled": False},
),
]
def _load_features(self, filepath):
"""Returns a dictionary mapping an image id to the corresponding image's objects features."""
id2features = {}
with open(filepath) as f:
reader = csv.DictReader(f, FIELDNAMES, delimiter="\t")
for i, item in enumerate(reader):
features = {}
img_h = int(item["img_h"])
img_w = int(item["img_w"])
num_boxes = int(item["num_boxes"])
features["features"] = np.frombuffer(base64.b64decode(item["features"]), dtype=np.float32).reshape(
(num_boxes, -1)
)
boxes = np.frombuffer(base64.b64decode(item["boxes"]), dtype=np.float32).reshape((num_boxes, 4))
features["normalized_boxes"] = self._normalize_boxes(boxes, img_h, img_w)
id2features[item["img_id"]] = features
return id2features
def _normalize_boxes(self, boxes, img_h, img_w):
""" Normalize the input boxes given the original image size."""
normalized_boxes = boxes.copy()
normalized_boxes[:, (0, 2)] /= img_w
normalized_boxes[:, (1, 3)] /= img_h
return normalized_boxes
def _generate_examples(self, filepath, imgfeat, labeled=True):
""" Yields examples as (key, example) tuples."""
id2features = self._load_features(imgfeat)
with open(filepath, encoding="utf-8") as f:
vqa = json.load(f)
if labeled:
for id_, d in enumerate(vqa):
img_features = id2features[d["img_id"]]
ids = [self.ans2label[x] for x in d["label"].keys()]
weights = list(d["label"].values())
yield id_, {
"question": d["sent"],
"question_type": d["question_type"],
"question_id": d["question_id"],
"image_id": d["img_id"],
"features": img_features["features"],
"normalized_boxes": img_features["normalized_boxes"],
"answer_type": d["answer_type"],
"label": {
"ids": ids,
"weights": weights,
},
}
else:
for id_, d in enumerate(vqa):
img_features = id2features[d["img_id"]]
yield id_, {
"question": d["sent"],
"question_type": "",
"question_id": d["question_id"],
"image_id": d["img_id"],
"features": img_features["features"],
"normalized_boxes": img_features["normalized_boxes"],
"answer_type": "",
"label": {
"ids": [],
"weights": [],
},
} |