File size: 7,643 Bytes
46e8818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bb73b8
 
62c0a9b
 
46e8818
 
 
62c0a9b
 
 
46e8818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90e803b
46e8818
 
 
68f1179
46e8818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62c0a9b
46e8818
 
 
62c0a9b
 
 
 
 
46e8818
 
 
 
 
 
 
 
 
 
90e803b
 
 
 
 
 
 
 
46e8818
 
 
90e803b
 
 
 
 
 
 
62c0a9b
46e8818
 
 
 
62c0a9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The Visual Question Answering (VQA) dataset preprocessed for LXMERT."""

import base64
import csv
import json
import os
import sys

import datasets
import numpy as np


csv.field_size_limit(sys.maxsize)


_CITATION = """\
@inproceedings{antol2015vqa,
  title={Vqa: Visual question answering},
  author={Antol, Stanislaw and Agrawal, Aishwarya and Lu, Jiasen and Mitchell, Margaret and Batra, Dhruv and Zitnick, C Lawrence and Parikh, Devi},
  booktitle={Proceedings of the IEEE international conference on computer vision},
  pages={2425--2433},
  year={2015}
}
"""

_DESCRIPTION = """\
VQA is a new dataset containing open-ended questions about images. 
These questions require an understanding of vision, language and commonsense knowledge to answer.
"""

_URLS = {
    "train": "https://nlp.cs.unc.edu/data/lxmert_data/vqa/train.json",
    "train_feat": "https://nlp.cs.unc.edu/data/lxmert_data/mscoco_imgfeat/train2014_obj36.zip",
    "valid": "https://nlp.cs.unc.edu/data/lxmert_data/vqa/valid.json",
    "valid_feat": "https://nlp.cs.unc.edu/data/lxmert_data/mscoco_imgfeat/val2014_obj36.zip",
    "test": "https://nlp.cs.unc.edu/data/lxmert_data/vqa/test.json",
    "test_feat": "https://nlp.cs.unc.edu/data/lxmert_data/mscoco_imgfeat/test2015_obj36.zip",
    "ans2label": "https://raw.githubusercontent.com/airsplay/lxmert/master/data/vqa/trainval_ans2label.json",
}

_TRAIN_FEAT_PATH = "train2014_obj36.tsv"
_VALID_FEAT_PATH = "mscoco_imgfeat/val2014_obj36.tsv"
_TEST_FEAT_PATH = "mscoco_imgfeat/test2015_obj36.tsv"

FIELDNAMES = [
    "img_id", "img_h", "img_w", "objects_id", "objects_conf", "attrs_id", "attrs_conf", "num_boxes", "boxes", "features"
]

_SHAPE_FEATURES = (36, 2048)
_SHAPE_BOXES = (36, 4)


class VqaV2Lxmert(datasets.GeneratorBasedBuilder):
    """The VQAv2.0 dataset preprocessed for LXMERT, with the objects features detected by a Faster RCNN replacing the
    raw images."""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="vqa", version=datasets.Version("2.0.0"), description="VQA version 2 dataset."),
    ]

    def _info(self):
        features = datasets.Features(
            {
                "question": datasets.Value("string"),
                "question_type": datasets.Value("string"),
                "question_id": datasets.Value("int32"),
                "image_id": datasets.Value("string"),
                "features": datasets.Array2D(_SHAPE_FEATURES, dtype="float32"),
                "normalized_boxes": datasets.Array2D(_SHAPE_BOXES, dtype="float32"),
                "answer_type": datasets.Value("string"),
                "label": datasets.Sequence(
                    {
                        "ids": datasets.ClassLabel(num_classes=3129),
                        "weights": datasets.Value("float32"),
                    }
                ),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        dl_dir = dl_manager.download_and_extract(_URLS)
        self.ans2label = json.load(open(dl_dir["ans2label"]))

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": dl_dir["train"], "imgfeat": os.path.join(dl_dir["train_feat"], _TRAIN_FEAT_PATH)},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": dl_dir["valid"], "imgfeat": os.path.join(dl_dir["valid_feat"], _VALID_FEAT_PATH)},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": dl_dir["test"], "imgfeat": os.path.join(dl_dir["test_feat"], _TEST_FEAT_PATH), "labeled": False},
            ),
        ]

    def _load_features(self, filepath):
        """Returns a dictionary mapping an image id to the corresponding image's objects features."""
        id2features = {}
        with open(filepath) as f:
            reader = csv.DictReader(f, FIELDNAMES, delimiter="\t")
            for i, item in enumerate(reader):
                features = {}
                img_h = int(item["img_h"])
                img_w = int(item["img_w"])
                num_boxes = int(item["num_boxes"])
                features["features"] = np.frombuffer(base64.b64decode(item["features"]), dtype=np.float32).reshape(
                    (num_boxes, -1)
                )
                boxes = np.frombuffer(base64.b64decode(item["boxes"]), dtype=np.float32).reshape((num_boxes, 4))
                features["normalized_boxes"] = self._normalize_boxes(boxes, img_h, img_w)
                id2features[item["img_id"]] = features
        return id2features

    def _normalize_boxes(self, boxes, img_h, img_w):
        """ Normalize the input boxes given the original image size."""
        normalized_boxes = boxes.copy()
        normalized_boxes[:, (0, 2)] /= img_w
        normalized_boxes[:, (1, 3)] /= img_h
        return normalized_boxes

    def _generate_examples(self, filepath, imgfeat, labeled=True):
        """ Yields examples as (key, example) tuples."""
        id2features = self._load_features(imgfeat)
        with open(filepath, encoding="utf-8") as f:
            vqa = json.load(f)
            if labeled:
                for id_, d in enumerate(vqa):
                    img_features = id2features[d["img_id"]]
                    ids = [self.ans2label[x] for x in d["label"].keys()]
                    weights = list(d["label"].values())
                    yield id_, {
                        "question": d["sent"],
                        "question_type": d["question_type"],
                        "question_id": d["question_id"],
                        "image_id": d["img_id"],
                        "features": img_features["features"],
                        "normalized_boxes": img_features["normalized_boxes"],
                        "answer_type": d["answer_type"],
                        "label": {
                            "ids": ids,
                            "weights": weights,
                        },
                    }
            else:
                for id_, d in enumerate(vqa):
                    img_features = id2features[d["img_id"]]
                    yield id_, {
                        "question": d["sent"],
                        "question_type": "",
                        "question_id": d["question_id"],
                        "image_id": d["img_id"],
                        "features": img_features["features"],
                        "normalized_boxes": img_features["normalized_boxes"],
                        "answer_type": "",
                        "label": {
                            "ids": [],
                            "weights": [],
                        },
                    }