Datasets:

ArXiv:
Libraries:
Datasets
License:
gsarti commited on
Commit
ce55afa
·
1 Parent(s): 83c029d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +58 -33
README.md CHANGED
@@ -116,42 +116,67 @@ The following fields are contained in the training set:
116
 
117
  The `train` split contains the totality of triplets (or pairs, when translation from scratch is performed) annotated with behavioral data produced during the translation.
118
 
119
- The following is an example of the subject `t3` post-editing a machine translation produced by mBART50 (task_type `pe2`) taken from the `train` split for Italian. The field `aligned_edit` is showed over three lines to provide a visual understanding of its contents.
120
 
121
  ```json
122
  {
123
- "item_id": 1072,
124
- "subject_id": "t3",
125
- "tasktype": "pe2",
126
- "src_text": "At the beginning dress was heavily influenced by the Byzantine culture in the east.",
127
- "mt_text": "All'inizio il vestito era fortemente influenzato dalla cultura bizantina dell'est.",
128
- "tgt+text": "Inizialmente, l'abbigliamento era fortemente influenzato dalla cultura bizantina orientale.",
129
- "edit_time": 45.687,
130
- "k_total": 51,
131
- "k_letter": 31,
132
- "k_digit": 0,
133
- "k_white": 2,
134
- "k_symbol": 3,
135
- "k_nav": 7,
136
- "k_erase": 3,
137
- "k_copy": 0,
138
- "k_cut": 0,
139
- "k_paste": 0,
140
- "n_pause_geq_300": 9,
141
- "len_pause_geq_300": 40032,
142
- "n_pause_geq_1000": 5,
143
- "len_pause_geq_1000": 38392,
144
- "num_annotations": 1,
145
- "n_insert": 0.0,
146
- "n_delete": 1.0,
147
- "n_substitute": 3.0,
148
- "n_shift": 0.0,
149
- "bleu": 47.99,
150
- "chrf": 62.05,
151
- "ter": 40.0,
152
- "aligned_edit: "REF: all'inizio il vestito era fortemente influenzato dalla cultura bizantina dell'est.\\n
153
- HYP: ********** inizialmente, l'abbigliamento era fortemente influenzato dalla cultura bizantina orientale.\\n
154
- EVAL: D S S S"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155
  }
156
  ```
157
 
 
116
 
117
  The `train` split contains the totality of triplets (or pairs, when translation from scratch is performed) annotated with behavioral data produced during the translation.
118
 
119
+ The following is an example of the subject `t1` post-editing a machine translation produced by Google Translate (task_type `pe1`) taken from the `train` split for Turkish. The field `aligned_edit` is showed over three lines to provide a visual understanding of its contents.
120
 
121
  ```json
122
  {
123
+ 'unit_id': 'flores101-main-tur-46-pe1-3',
124
+ 'flores_id': 871,
125
+ 'item_id': 'flores101-main-463',
126
+ 'subject_id': 'tur_t1',
127
+ 'task_type': 'pe1',
128
+ 'translation_type': 'pe',
129
+ 'src_len_chr': 109,
130
+ 'mt_len_chr': 129.0,
131
+ 'tgt_len_chr': 120,
132
+ 'src_len_wrd': 17,
133
+ 'mt_len_wrd': 15.0,
134
+ 'tgt_len_wrd': 13,
135
+ 'edit_time': 11.762999534606934,
136
+ 'k_total': 31,
137
+ 'k_letter': 9,
138
+ 'k_digit': 0,
139
+ 'k_white': 0,
140
+ 'k_symbol': 0,
141
+ 'k_nav': 20,
142
+ 'k_erase': 2,
143
+ 'k_copy': 0,
144
+ 'k_cut': 0,
145
+ 'k_paste': 0,
146
+ 'k_do': 0,
147
+ 'n_pause_geq_300': 2,
148
+ 'len_pause_geq_300': 4986,
149
+ 'n_pause_geq_1000': 1,
150
+ 'len_pause_geq_1000': 4490,
151
+ 'event_time': 11763,
152
+ 'num_annotations': 2,
153
+ 'last_modification_time': 1643569484,
154
+ 'n_insert': 0.0,
155
+ 'n_delete': 2.0,
156
+ 'n_substitute': 1.0,
157
+ 'n_shift': 0.0,
158
+ 'tot_shifted_words': 0.0,
159
+ 'tot_edits': 3.0,
160
+ 'hter': 20.0,
161
+ 'bleu': 0.0,
162
+ 'chrf': 2.569999933242798,
163
+ 'lang_id': 'tur',
164
+ 'doc_id': 46,
165
+ 'time_s': 11.762999534606934,
166
+ 'time_m': 0.1960500031709671,
167
+ 'time_h': 0.0032675000838935375,
168
+ 'time_per_char': 0.1079174280166626,
169
+ 'time_per_word': 0.6919412016868591,
170
+ 'key_per_char': 0.2844036817550659,
171
+ 'words_per_hour': 5202.75439453125,
172
+ 'words_per_minute': 86.71257019042969,
173
+ 'per_subject_visit_order': 201,
174
+ 'src_text': 'As one example, American citizens in the Middle East might face different situations from Europeans or Arabs.',
175
+ 'mt_text': "Bir örnek olarak, Orta Doğu'daki Amerikan vatandaşları, Avrupalılardan veya Araplardan farklı durumlarla karşı karşıya kalabilir.",
176
+ 'tgt_text': "Örneğin, Orta Doğu'daki Amerikan vatandaşları, Avrupalılardan veya Araplardan farklı durumlarla karşı karşıya kalabilir.",
177
+ 'aligned_edit': "REF: bir örnek olarak, orta doğu'daki amerikan vatandaşları, avrupalılardan veya araplardan farklı durumlarla karşı karşıya kalabilir.\\n
178
+ HYP: *** ***** örneğin, orta doğu'daki amerikan vatandaşları, avrupalılardan veya araplardan farklı durumlarla karşı karşıya kalabilir.\\n
179
+ EVAL: D D S"
180
  }
181
  ```
182