File size: 8,057 Bytes
e0ff63c f6a8a5a 05462d9 f0a9892 05462d9 f6a8a5a b459cc0 9fdf80a f6a8a5a 2f74326 b459cc0 340305f beec6b1 340305f e0ff63c f6a8a5a e0ff63c 9fdf80a e0ff63c 9fdf80a e0ff63c c865e13 e0ff63c f6a8a5a f76854d e0ff63c c865e13 e0ff63c 9fdf80a e0ff63c f6a8a5a e0ff63c c865e13 e0ff63c f6a8a5a e0ff63c c865e13 e0ff63c c865e13 e0ff63c f6a8a5a e0ff63c c865e13 e0ff63c 9fdf80a e0ff63c c865e13 e0ff63c c865e13 e0ff63c c865e13 e0ff63c 9fdf80a f6a8a5a 9fdf80a f6a8a5a e0ff63c c865e13 e0ff63c 9fdf80a f6a8a5a 9fdf80a e0ff63c c865e13 e0ff63c c865e13 e0ff63c c865e13 e0ff63c c865e13 e0ff63c c865e13 e0ff63c c865e13 e0ff63c c865e13 e0ff63c c865e13 e0ff63c c865e13 e0ff63c f6a8a5a e0ff63c b459cc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
---
annotations_creators:
- found
language_creators:
- found
language:
- en
license:
- mit
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- extended|gigaword_2003
task_categories:
- summarization
task_ids: []
paperswithcode_id: null
pretty_name: Gigaword
train-eval-index:
- config: default
task: summarization
task_id: summarization
splits:
train_split: train
eval_split: test
col_mapping:
document: text
summary: target
metrics:
- type: rouge
name: Rouge
tags:
- headline-generation
dataset_info:
features:
- name: document
dtype: string
- name: summary
dtype: string
splits:
- name: train
num_bytes: 915249388
num_examples: 3803957
- name: validation
num_bytes: 45767096
num_examples: 189651
- name: test
num_bytes: 450782
num_examples: 1951
download_size: 578402958
dataset_size: 961467266
---
# Dataset Card for Gigaword
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** [Gigaword repository](https://github.com/harvardnlp/sent-summary)
- **Leaderboard:** [Gigaword leaderboard](https://paperswithcode.com/sota/text-summarization-on-gigaword)
- **Paper:** [A Neural Attention Model for Abstractive Sentence Summarization](https://arxiv.org/abs/1509.00685)
- **Point of Contact:** [Alexander Rush](mailto:arush@cornell.edu)
- **Size of downloaded dataset files:** 578.41 MB
- **Size of the generated dataset:** 962.96 MB
- **Total amount of disk used:** 1.54 GB
### Dataset Summary
Headline-generation on a corpus of article pairs from Gigaword consisting of
around 4 million articles. Use the 'org_data' provided by
https://github.com/microsoft/unilm/ which is identical to
https://github.com/harvardnlp/sent-summary but with better format.
### Supported Tasks and Leaderboards
- `summarization`: This dataset can be used for Summarization, where given a dicument, the goal is to predict its summery. The model performance is evaluated using the [ROUGE](https://huggingface.co/metrics/rouge) metric. The leaderboard for this task is available [here](https://paperswithcode.com/sota/text-summarization-on-gigaword).
### Languages
English.
## Dataset Structure
### Data Instances
An example of 'train' looks as follows.
```
{
'document': "australia 's current account deficit shrunk by a record #.## billion dollars -lrb- #.## billion us -rrb- in the june quarter due to soaring commodity prices , figures released monday showed .",
'summary': 'australian current account deficit narrows sharply'
}
```
### Data Fields
The data fields are the same among all splits.
- `document`: a `string` feature.
- `summary`: a `string` feature.
### Data Splits
| name | train |validation|test|
|-------|------:|---------:|---:|
|default|3803957| 189651|1951|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
From the paper:
> For our training set, we pair the headline of each article with its first sentence to create an inputsummary pair. While the model could in theory be trained on any pair, Gigaword contains many spurious headline-article pairs. We therefore prune training based on the following heuristic filters: (1) Are there no non-stop-words in common? (2) Does the title contain a byline or other extraneous editing marks? (3) Does the title have a question mark or colon? After applying these filters, the training set consists of roughly J = 4 million title-article pairs. We apply a minimal preprocessing step using PTB tokenization, lower-casing, replacing all digit characters with #, and replacing of word types seen less than 5 times with UNK. We also remove all articles from the time-period of the DUC evaluation. release.
The complete input training vocabulary consists of 119 million word tokens and 110K unique word types with an average sentence size of 31.3 words. The headline vocabulary consists of 31 million tokens and 69K word types with the average title of length 8.3 words (note that this is significantly shorter than the DUC summaries). On average there are 4.6 overlapping word types between the headline and the input; although only 2.6 in the
first 75-characters of the input.
#### Who are the source language producers?
From the paper:
> For training data for both tasks, we utilize the annotated Gigaword data set (Graff et al., 2003; Napoles et al., 2012), which consists of standard Gigaword, preprocessed with Stanford CoreNLP tools (Manning et al., 2014).
### Annotations
#### Annotation process
Annotations are inherited from the annotatated Gigaword data set.
Additional information from the paper:
> Our model only uses annotations for tokenization and sentence separation, although several of the baselines use parsing and tagging as well.
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```bibtex
@article{graff2003english,
title={English gigaword},
author={Graff, David and Kong, Junbo and Chen, Ke and Maeda, Kazuaki},
journal={Linguistic Data Consortium, Philadelphia},
volume={4},
number={1},
pages={34},
year={2003}
}
@article{Rush_2015,
title={A Neural Attention Model for Abstractive Sentence Summarization},
url={http://dx.doi.org/10.18653/v1/D15-1044},
DOI={10.18653/v1/d15-1044},
journal={Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing},
publisher={Association for Computational Linguistics},
author={Rush, Alexander M. and Chopra, Sumit and Weston, Jason},
year={2015}
}
```
### Contributions
Thanks to [@lewtun](https://github.com/lewtun), [@lhoestq](https://github.com/lhoestq), [@thomwolf](https://github.com/thomwolf) for adding this dataset. |