Datasets:

Languages:
English
ArXiv:
License:
File size: 8,057 Bytes
e0ff63c
f6a8a5a
 
 
 
05462d9
f0a9892
05462d9
f6a8a5a
 
 
 
 
 
 
 
 
b459cc0
9fdf80a
f6a8a5a
2f74326
 
 
 
 
 
 
 
 
 
 
b459cc0
 
 
 
340305f
 
 
 
 
 
 
 
 
 
 
 
 
beec6b1
 
 
340305f
 
e0ff63c
 
f6a8a5a
e0ff63c
 
 
 
9fdf80a
e0ff63c
 
 
 
9fdf80a
e0ff63c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c865e13
e0ff63c
f6a8a5a
 
 
 
f76854d
 
 
e0ff63c
c865e13
e0ff63c
 
 
 
 
 
9fdf80a
e0ff63c
f6a8a5a
e0ff63c
c865e13
e0ff63c
f6a8a5a
e0ff63c
c865e13
e0ff63c
c865e13
e0ff63c
 
 
 
f6a8a5a
 
e0ff63c
 
 
c865e13
e0ff63c
 
 
 
 
 
9fdf80a
e0ff63c
 
 
 
 
c865e13
e0ff63c
c865e13
e0ff63c
 
 
c865e13
e0ff63c
9fdf80a
 
f6a8a5a
 
 
 
9fdf80a
 
 
f6a8a5a
 
e0ff63c
c865e13
e0ff63c
9fdf80a
 
f6a8a5a
 
 
 
9fdf80a
 
 
e0ff63c
 
c865e13
e0ff63c
 
 
c865e13
e0ff63c
c865e13
e0ff63c
 
 
c865e13
e0ff63c
 
 
c865e13
e0ff63c
 
 
c865e13
e0ff63c
c865e13
e0ff63c
 
 
c865e13
e0ff63c
 
 
c865e13
e0ff63c
f6a8a5a
e0ff63c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b459cc0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
---
annotations_creators:
- found
language_creators:
- found
language:
- en
license:
- mit
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- extended|gigaword_2003
task_categories:
- summarization
task_ids: []
paperswithcode_id: null
pretty_name: Gigaword
train-eval-index:
- config: default
  task: summarization
  task_id: summarization
  splits:
    train_split: train
    eval_split: test
  col_mapping:
    document: text
    summary: target
  metrics:
  - type: rouge
    name: Rouge
tags:
- headline-generation
dataset_info:
  features:
  - name: document
    dtype: string
  - name: summary
    dtype: string
  splits:
  - name: train
    num_bytes: 915249388
    num_examples: 3803957
  - name: validation
    num_bytes: 45767096
    num_examples: 189651
  - name: test
    num_bytes: 450782
    num_examples: 1951
  download_size: 578402958
  dataset_size: 961467266
---

# Dataset Card for Gigaword

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Repository:** [Gigaword repository](https://github.com/harvardnlp/sent-summary)
- **Leaderboard:** [Gigaword leaderboard](https://paperswithcode.com/sota/text-summarization-on-gigaword)
- **Paper:** [A Neural Attention Model for Abstractive Sentence Summarization](https://arxiv.org/abs/1509.00685)
- **Point of Contact:** [Alexander Rush](mailto:arush@cornell.edu)
- **Size of downloaded dataset files:** 578.41 MB
- **Size of the generated dataset:** 962.96 MB
- **Total amount of disk used:** 1.54 GB

### Dataset Summary

Headline-generation on a corpus of article pairs from Gigaword consisting of
around 4 million articles. Use the 'org_data' provided by
https://github.com/microsoft/unilm/ which is identical to
https://github.com/harvardnlp/sent-summary but with better format.

### Supported Tasks and Leaderboards

- `summarization`: This dataset can be used for Summarization, where given a dicument, the goal is to predict its summery. The model performance is evaluated using the [ROUGE](https://huggingface.co/metrics/rouge) metric. The leaderboard for this task is available [here](https://paperswithcode.com/sota/text-summarization-on-gigaword).

### Languages

English.

## Dataset Structure

### Data Instances

An example of 'train' looks as follows.
```
{
  'document': "australia 's current account deficit shrunk by a record #.## billion dollars -lrb- #.## billion us -rrb- in the june quarter due to soaring commodity prices , figures released monday showed .", 
  'summary': 'australian current account deficit narrows sharply'
}
```

### Data Fields

The data fields are the same among all splits.

- `document`: a `string` feature.
- `summary`: a `string` feature.

### Data Splits

| name  | train |validation|test|
|-------|------:|---------:|---:|
|default|3803957|    189651|1951|

## Dataset Creation

### Curation Rationale

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Source Data

#### Initial Data Collection and Normalization

From the paper:
> For our training set, we pair the headline of each article with its first sentence to create an inputsummary pair. While the model could in theory be trained on any pair, Gigaword contains many spurious headline-article pairs. We therefore prune training based on the following heuristic filters: (1) Are there no non-stop-words in common? (2) Does the title contain a byline or other extraneous editing marks? (3) Does the title have a question mark or colon? After applying these filters, the training set consists of roughly J = 4 million title-article pairs. We apply a minimal preprocessing step using PTB tokenization, lower-casing, replacing all digit characters with #, and replacing of word types seen less than 5 times with UNK. We also remove all articles from the time-period of the DUC evaluation. release. 
The complete input training vocabulary consists of 119 million word tokens and 110K unique word types with an average sentence size of 31.3 words. The headline vocabulary consists of 31 million tokens and 69K word types with the average title of length 8.3 words (note that this is significantly shorter than the DUC summaries). On average there are 4.6 overlapping word types between the headline and the input; although only 2.6 in the
first 75-characters of the input.

#### Who are the source language producers?

From the paper:
> For training data for both tasks, we utilize the annotated Gigaword data set (Graff et al., 2003; Napoles et al., 2012), which consists of standard Gigaword, preprocessed with Stanford CoreNLP tools (Manning et al., 2014).

### Annotations

#### Annotation process

Annotations are inherited from the annotatated Gigaword data set.

Additional information from the paper:
> Our model only uses annotations for tokenization and sentence separation, although several of the baselines use parsing and tagging as well.

#### Who are the annotators?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Personal and Sensitive Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Licensing Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Citation Information

```bibtex
@article{graff2003english,
  title={English gigaword},
  author={Graff, David and Kong, Junbo and Chen, Ke and Maeda, Kazuaki},
  journal={Linguistic Data Consortium, Philadelphia},
  volume={4},
  number={1},
  pages={34},
  year={2003}
}

@article{Rush_2015,
   title={A Neural Attention Model for Abstractive Sentence Summarization},
   url={http://dx.doi.org/10.18653/v1/D15-1044},
   DOI={10.18653/v1/d15-1044},
   journal={Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing},
   publisher={Association for Computational Linguistics},
   author={Rush, Alexander M. and Chopra, Sumit and Weston, Jason},
   year={2015}
}
```


### Contributions

Thanks to [@lewtun](https://github.com/lewtun), [@lhoestq](https://github.com/lhoestq), [@thomwolf](https://github.com/thomwolf) for adding this dataset.