abumafrim commited on
Commit
550f940
1 Parent(s): 2ec2db2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -43
README.md CHANGED
@@ -18,14 +18,12 @@ size_categories:
18
  language:
19
  - amh
20
  - ary
21
- - ar
22
  - arq
23
  - hau
24
  - ibo
25
  - kin
26
  - por
27
  - pcm
28
- - eng
29
  - oro
30
  - swa
31
  - tir
@@ -35,8 +33,6 @@ language:
35
  pretty_name: AfriSenti
36
  ---
37
 
38
- # Dataset Card for AfriSenti Dataset
39
-
40
  <p align="center">
41
  <img src="https://raw.githubusercontent.com/afrisenti-semeval/afrisent-semeval-2023/main/images/afrisenti-twitter.png", width="700" height="500">
42
 
@@ -50,7 +46,7 @@ pretty_name: AfriSenti
50
  - **Paper:** [AfriSenti: AfriSenti: A Twitter Sentiment Analysis Benchmark for African Languages](https://arxiv.org/pdf/2302.08956.pdf)
51
  - **Paper:** [NaijaSenti: A Nigerian Twitter Sentiment Corpus for Multilingual Sentiment Analysis](https://arxiv.org/pdf/2201.08277.pdf)
52
  - **Leaderboard:** N/A
53
- - **Point of Contact:** [shamsuddeen Muhammad](shamsuddeen2004@gmail.com)
54
 
55
 
56
  ### Dataset Summary
@@ -114,16 +110,16 @@ The AfriSenti dataset has 3 splits: train, validation, and test. Below are the s
114
  from datasets import load_dataset
115
 
116
  # you can load specific languages (e.g., Amharic). This download train, validation and test sets.
117
- ds = load_dataset("shmuhammad/AfriSenti-twitter-sentiment", "amh")
118
 
119
  # train set only
120
- ds = load_dataset("shmuhammad/AfriSenti-twitter-sentiment", "amh", split = "train")
121
 
122
  # test set only
123
- ds = load_dataset("shmuhammad/AfriSenti-twitter-sentiment", "amh", split = "test")
124
 
125
  # validation set only
126
- ds = load_dataset("shmuhammad/AfriSenti-twitter-sentiment", "amh", split = "validation")
127
 
128
 
129
  ```
@@ -141,25 +137,6 @@ AfriSenti Version 1.0.0 aimed to be used in the first Afrocentric SemEval shared
141
 
142
  Twitter
143
 
144
- #### Initial Data Collection and Normalization
145
-
146
- [More Information Needed]
147
-
148
- #### Who are the source language producers?
149
-
150
- [More Information Needed]
151
-
152
- ### Annotations
153
-
154
- #### Annotation process
155
-
156
- [More Information Needed]
157
-
158
- #### Who are the annotators?
159
-
160
-
161
-
162
- [More Information Needed]
163
 
164
  ### Personal and Sensitive Information
165
 
@@ -172,15 +149,6 @@ We anonymized the tweets by replacing all *@mentions* by *@user* and removed all
172
 
173
  The Afrisenti dataset has the potential to improve sentiment analysis for African languages, which is essential for understanding and analyzing the diverse perspectives of people in the African continent. This dataset can enable researchers and developers to create sentiment analysis models that are specific to African languages, which can be used to gain insights into the social, cultural, and political views of people in African countries. Furthermore, this dataset can help address the issue of underrepresentation of African languages in natural language processing, paving the way for more equitable and inclusive AI technologies.
174
 
175
- [More Information Needed]
176
-
177
- ### Discussion of Biases
178
-
179
- [More Information Needed]
180
-
181
- ### Other Known Limitations
182
-
183
- [More Information Needed]
184
 
185
  ## Additional Information
186
 
@@ -235,9 +203,4 @@ This AfriSenti is licensed under a Creative Commons Attribution 4.0 Internationa
235
  journal={arXiv preprint arXiv:2304.06845},
236
  year={2023}
237
  }
238
- ```
239
-
240
-
241
- ### Contributions
242
-
243
- [More Information Needed]
 
18
  language:
19
  - amh
20
  - ary
 
21
  - arq
22
  - hau
23
  - ibo
24
  - kin
25
  - por
26
  - pcm
 
27
  - oro
28
  - swa
29
  - tir
 
33
  pretty_name: AfriSenti
34
  ---
35
 
 
 
36
  <p align="center">
37
  <img src="https://raw.githubusercontent.com/afrisenti-semeval/afrisent-semeval-2023/main/images/afrisenti-twitter.png", width="700" height="500">
38
 
 
46
  - **Paper:** [AfriSenti: AfriSenti: A Twitter Sentiment Analysis Benchmark for African Languages](https://arxiv.org/pdf/2302.08956.pdf)
47
  - **Paper:** [NaijaSenti: A Nigerian Twitter Sentiment Corpus for Multilingual Sentiment Analysis](https://arxiv.org/pdf/2201.08277.pdf)
48
  - **Leaderboard:** N/A
49
+ - **Point of Contact:** [Shamsuddeen Muhammad](shamsuddeen2004@gmail.com)
50
 
51
 
52
  ### Dataset Summary
 
110
  from datasets import load_dataset
111
 
112
  # you can load specific languages (e.g., Amharic). This download train, validation and test sets.
113
+ ds = load_dataset("HausaNLP/AfriSenti-Twitter", "amh")
114
 
115
  # train set only
116
+ ds = load_dataset("HausaNLP/AfriSenti-Twitter", "amh", split = "train")
117
 
118
  # test set only
119
+ ds = load_dataset("HausaNLP/AfriSenti-Twitter", "amh", split = "test")
120
 
121
  # validation set only
122
+ ds = load_dataset("HausaNLP/AfriSenti-Twitter", "amh", split = "validation")
123
 
124
 
125
  ```
 
137
 
138
  Twitter
139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
 
141
  ### Personal and Sensitive Information
142
 
 
149
 
150
  The Afrisenti dataset has the potential to improve sentiment analysis for African languages, which is essential for understanding and analyzing the diverse perspectives of people in the African continent. This dataset can enable researchers and developers to create sentiment analysis models that are specific to African languages, which can be used to gain insights into the social, cultural, and political views of people in African countries. Furthermore, this dataset can help address the issue of underrepresentation of African languages in natural language processing, paving the way for more equitable and inclusive AI technologies.
151
 
 
 
 
 
 
 
 
 
 
152
 
153
  ## Additional Information
154
 
 
203
  journal={arXiv preprint arXiv:2304.06845},
204
  year={2023}
205
  }
206
+ ```