|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """\ |
|
This is a new collection of translated movie subtitles from http://www.opensubtitles.org/. |
|
|
|
IMPORTANT: If you use the OpenSubtitle corpus: Please, add a link to http://www.opensubtitles.org/ to your website and to your reports and publications produced with the data! |
|
|
|
This is a slightly cleaner version of the subtitle collection using improved sentence alignment and better language checking. |
|
|
|
62 languages, 1,782 bitexts |
|
total number of files: 3,735,070 |
|
total number of tokens: 22.10G |
|
total number of sentence fragments: 3.35G |
|
""" |
|
_HOMEPAGE_URL = "http://opus.nlpl.eu/OpenSubtitles.php" |
|
_CITATION = """\ |
|
P. Lison and J. Tiedemann, 2016, OpenSubtitles2016: Extracting Large Parallel Corpora from Movie and TV Subtitles. In Proceedings of the 10th International Conference on Language Resources and Evaluation (LREC 2016) |
|
""" |
|
|
|
_VERSION = "2018.0.0" |
|
_BASE_NAME = "OpenSubtitles.{}.{}" |
|
_BASE_URL = "https://object.pouta.csc.fi/OPUS-OpenSubtitles/v2018/moses/{}-{}.txt.zip" |
|
|
|
|
|
_LANGUAGE_PAIRS = [ |
|
("bs", "eo"), |
|
("fr", "hy"), |
|
("da", "ru"), |
|
("en", "hi"), |
|
("bn", "is"), |
|
] |
|
|
|
|
|
class OpenSubtitlesConfig(datasets.BuilderConfig): |
|
def __init__(self, *args, lang1=None, lang2=None, **kwargs): |
|
super().__init__( |
|
*args, |
|
name=f"{lang1}-{lang2}", |
|
**kwargs, |
|
) |
|
self.lang1 = lang1 |
|
self.lang2 = lang2 |
|
|
|
|
|
class OpenSubtitles(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
OpenSubtitlesConfig( |
|
lang1=lang1, |
|
lang2=lang2, |
|
description=f"Translating {lang1} to {lang2} or vice versa", |
|
version=datasets.Version(_VERSION), |
|
) |
|
for lang1, lang2 in _LANGUAGE_PAIRS |
|
] |
|
BUILDER_CONFIG_CLASS = OpenSubtitlesConfig |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"meta": { |
|
"year": datasets.Value("uint32"), |
|
"imdbId": datasets.Value("uint32"), |
|
"subtitleId": { |
|
self.config.lang1: datasets.Value("uint32"), |
|
self.config.lang2: datasets.Value("uint32"), |
|
}, |
|
"sentenceIds": { |
|
self.config.lang1: datasets.Sequence(datasets.Value("uint32")), |
|
self.config.lang2: datasets.Sequence(datasets.Value("uint32")), |
|
}, |
|
}, |
|
"translation": datasets.Translation(languages=(self.config.lang1, self.config.lang2)), |
|
}, |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE_URL, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
def _base_url(lang1, lang2): |
|
return _BASE_URL.format(lang1, lang2) |
|
|
|
download_url = _base_url(self.config.lang1, self.config.lang2) |
|
path = dl_manager.download_and_extract(download_url) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"datapath": path}, |
|
) |
|
] |
|
|
|
@classmethod |
|
def _extract_info(cls, sentence_id): |
|
|
|
|
|
|
|
parts = sentence_id[: -len(".xml.gz")].split("/") |
|
parts.pop(0) |
|
|
|
|
|
return tuple(map(int, parts)) |
|
|
|
def _generate_examples(self, datapath): |
|
l1, l2 = self.config.lang1, self.config.lang2 |
|
folder = l1 + "-" + l2 |
|
l1_file = _BASE_NAME.format(folder, l1) |
|
l2_file = _BASE_NAME.format(folder, l2) |
|
ids_file = _BASE_NAME.format(folder, "ids") |
|
l1_path = os.path.join(datapath, l1_file) |
|
l2_path = os.path.join(datapath, l2_file) |
|
ids_path = os.path.join(datapath, ids_file) |
|
with open(l1_path, encoding="utf-8") as f1, open(l2_path, encoding="utf-8") as f2, open( |
|
ids_path, encoding="utf-8" |
|
) as f3: |
|
for sentence_counter, (x, y, _id) in enumerate(zip(f1, f2, f3)): |
|
x = x.strip() |
|
y = y.strip() |
|
l1_id, l2_id, l1_sid, l2_sid = _id.split("\t") |
|
year, imdb_id, l1_subtitle_id = self._extract_info(l1_id) |
|
_, _, l2_subtitle_id = self._extract_info(l2_id) |
|
l1_sentence_ids = list(map(int, l1_sid.split(" "))) |
|
l2_sentence_ids = list(map(int, l2_sid.split(" "))) |
|
|
|
result = ( |
|
sentence_counter, |
|
{ |
|
"id": str(sentence_counter), |
|
"meta": { |
|
"year": year, |
|
"imdbId": imdb_id, |
|
"subtitleId": {l1: l1_subtitle_id, l2: l2_subtitle_id}, |
|
"sentenceIds": {l1: l1_sentence_ids, l2: l2_sentence_ids}, |
|
}, |
|
"translation": {l1: x, l2: y}, |
|
}, |
|
) |
|
sentence_counter += 1 |
|
yield result |
|
|