ragerri commited on
Commit
d056288
1 Parent(s): 04db93c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -5
README.md CHANGED
@@ -193,19 +193,17 @@ We translate the BioASQ-6B English Question Answering dataset to generate parall
193
  We translate the `body`, `snippets`, `ideal_answer` and `exact_answer` fields. We have validated the quality of the `ideal_answer` field, however, the `exact_answer` field can contain translation artifacts, as NLLB200 often produces low-quality translations of single-word sentences.
194
  </p>
195
 
196
- - 📖 Paper: [Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain](https://arxiv.org/abs/2404.07613)
197
  - 🌐 Project Website: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote)
198
  - Original Dataset: [http://bioasq.org/participate/challenges_year_6](http://bioasq.org/participate/challenges_year_6)
199
  - Funding: CHIST-ERA XAI 2019 call. Antidote (PCI2020-120717-2) funded by MCIN/AEI /10.13039/501100011033 and by European Union NextGenerationEU/PRTR
200
 
201
  ## Citation
202
  ```bibtext
203
- @misc{garcíaferrero2024medical,
204
  title={Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain},
205
  author={Iker García-Ferrero and Rodrigo Agerri and Aitziber Atutxa Salazar and Elena Cabrio and Iker de la Iglesia and Alberto Lavelli and Bernardo Magnini and Benjamin Molinet and Johana Ramirez-Romero and German Rigau and Jose Maria Villa-Gonzalez and Serena Villata and Andrea Zaninello},
206
  year={2024},
207
- eprint={2404.07613},
208
- archivePrefix={arXiv},
209
- primaryClass={cs.CL}
210
  }
211
  ```
 
193
  We translate the `body`, `snippets`, `ideal_answer` and `exact_answer` fields. We have validated the quality of the `ideal_answer` field, however, the `exact_answer` field can contain translation artifacts, as NLLB200 often produces low-quality translations of single-word sentences.
194
  </p>
195
 
196
+ - 📖 Paper: [Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain. In LREC-COLING 2024](https://arxiv.org/abs/2404.07613)
197
  - 🌐 Project Website: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote)
198
  - Original Dataset: [http://bioasq.org/participate/challenges_year_6](http://bioasq.org/participate/challenges_year_6)
199
  - Funding: CHIST-ERA XAI 2019 call. Antidote (PCI2020-120717-2) funded by MCIN/AEI /10.13039/501100011033 and by European Union NextGenerationEU/PRTR
200
 
201
  ## Citation
202
  ```bibtext
203
+ @proceedings{garcíaferrero2024medical,
204
  title={Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain},
205
  author={Iker García-Ferrero and Rodrigo Agerri and Aitziber Atutxa Salazar and Elena Cabrio and Iker de la Iglesia and Alberto Lavelli and Bernardo Magnini and Benjamin Molinet and Johana Ramirez-Romero and German Rigau and Jose Maria Villa-Gonzalez and Serena Villata and Andrea Zaninello},
206
  year={2024},
207
+ booktitle={Proceedings of LREC-COLING}
 
 
208
  }
209
  ```