Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -193,19 +193,17 @@ We translate the BioASQ-6B English Question Answering dataset to generate parall
|
|
193 |
We translate the `body`, `snippets`, `ideal_answer` and `exact_answer` fields. We have validated the quality of the `ideal_answer` field, however, the `exact_answer` field can contain translation artifacts, as NLLB200 often produces low-quality translations of single-word sentences.
|
194 |
</p>
|
195 |
|
196 |
-
- 📖 Paper: [Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain](https://arxiv.org/abs/2404.07613)
|
197 |
- 🌐 Project Website: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote)
|
198 |
- Original Dataset: [http://bioasq.org/participate/challenges_year_6](http://bioasq.org/participate/challenges_year_6)
|
199 |
- Funding: CHIST-ERA XAI 2019 call. Antidote (PCI2020-120717-2) funded by MCIN/AEI /10.13039/501100011033 and by European Union NextGenerationEU/PRTR
|
200 |
|
201 |
## Citation
|
202 |
```bibtext
|
203 |
-
@
|
204 |
title={Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain},
|
205 |
author={Iker García-Ferrero and Rodrigo Agerri and Aitziber Atutxa Salazar and Elena Cabrio and Iker de la Iglesia and Alberto Lavelli and Bernardo Magnini and Benjamin Molinet and Johana Ramirez-Romero and German Rigau and Jose Maria Villa-Gonzalez and Serena Villata and Andrea Zaninello},
|
206 |
year={2024},
|
207 |
-
|
208 |
-
archivePrefix={arXiv},
|
209 |
-
primaryClass={cs.CL}
|
210 |
}
|
211 |
```
|
|
|
193 |
We translate the `body`, `snippets`, `ideal_answer` and `exact_answer` fields. We have validated the quality of the `ideal_answer` field, however, the `exact_answer` field can contain translation artifacts, as NLLB200 often produces low-quality translations of single-word sentences.
|
194 |
</p>
|
195 |
|
196 |
+
- 📖 Paper: [Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain. In LREC-COLING 2024](https://arxiv.org/abs/2404.07613)
|
197 |
- 🌐 Project Website: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote)
|
198 |
- Original Dataset: [http://bioasq.org/participate/challenges_year_6](http://bioasq.org/participate/challenges_year_6)
|
199 |
- Funding: CHIST-ERA XAI 2019 call. Antidote (PCI2020-120717-2) funded by MCIN/AEI /10.13039/501100011033 and by European Union NextGenerationEU/PRTR
|
200 |
|
201 |
## Citation
|
202 |
```bibtext
|
203 |
+
@proceedings{garcíaferrero2024medical,
|
204 |
title={Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain},
|
205 |
author={Iker García-Ferrero and Rodrigo Agerri and Aitziber Atutxa Salazar and Elena Cabrio and Iker de la Iglesia and Alberto Lavelli and Bernardo Magnini and Benjamin Molinet and Johana Ramirez-Romero and German Rigau and Jose Maria Villa-Gonzalez and Serena Villata and Andrea Zaninello},
|
206 |
year={2024},
|
207 |
+
booktitle={Proceedings of LREC-COLING}
|
|
|
|
|
208 |
}
|
209 |
```
|