Datasets:
HiTZ
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 6,547 Bytes
9cdc4f1
0e737e1
 
 
 
 
4b35e07
 
0e737e1
 
4b35e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cdc4f1
0e737e1
 
 
 
 
 
 
 
 
 
 
48ca953
0e737e1
 
 
 
 
 
 
 
 
 
a9308c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e737e1
33a8392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e737e1
 
 
 
48ca953
 
 
 
 
 
 
 
0e737e1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
---
language:
- en
- es
- fr
- it
license: apache-2.0
pretty_name: Multilingual Medical Corpus
tags:
- medical
dataset_info:
  features:
  - name: text
    dtype: string
  splits:
  - name: en
    num_bytes: 7672665166
    num_examples: 21226237
  - name: es
    num_bytes: 6245812986
    num_examples: 35444286
  - name: fr
    num_bytes: 4763269707
    num_examples: 7192779
  - name: it
    num_bytes: 1021535232
    num_examples: 3504555
  download_size: 10530951092
  dataset_size: 19703283091
configs:
- config_name: default
  data_files:
  - split: en
    path: data/en-*
  - split: es
    path: data/es-*
  - split: fr
    path: data/fr-*
  - split: it
    path: data/it-*
---

<p align="center">
    <br>
    <img src="http://www.ixa.eus/sites/default/files/anitdote.png" style="width: 30%;">
    <h2 align="center">Mutilingual Medical Corpus</h2>
    <be>

<p align="justify">
Multilingual-Medical-Corpus a 3 billion word multilingual corpus for training LLMs adapted to the medical domain. Multilingual-Medical-Corpus includes four languages, namely, English, Spanish, French, and Italian.
</p>

  - 📖 Paper: [Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain](https://arxiv.org/abs/2404.07613)
  - 🌐 Project Website: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote)

# Corpus Description
- **Developed by**: Iker García-Ferrero, Rodrigo Agerri, Aitziber Atutxa Salazar, Elena Cabrio, Iker de la Iglesia, Alberto Lavelli, Bernardo Magnini, Benjamin Molinet, Johana Ramirez-Romero, German Rigau, Jose Maria Villa-Gonzalez, Serena Villata and Andrea Zaninello
- **Contact**: [Iker García-Ferrero](https://ikergarcia1996.github.io/Iker-Garcia-Ferrero/) and [Rodrigo Agerri](https://ragerri.github.io/)
- **Website**: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote)
- **Funding**: CHIST-ERA XAI 2019 call. Antidote (PCI2020-120717-2) funded by MCIN/AEI /10.13039/501100011033 and by European Union NextGenerationEU/PRTR
- **Language(s) (NLP)**: English, Spanish, French, Italian
- **License**: apache-2.0

<table border="1" cellspacing="0" cellpadding="5">
    <caption>Data sources and word counts by language.</caption>
    <thead>
        <tr>
            <th>Language</th>
            <th>Source</th>
            <th>Words</th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td rowspan="3">English</td>
            <td>ClinicalTrials</td>
            <td>127.4M</td>
        </tr>
        <tr>
            <td>EMEA</td>
            <td>12M</td>
        </tr>
        <tr>
            <td>PubMed</td>
            <td>968.4M</td>
        </tr>
        <tr>
            <td rowspan="6">Spanish</td>
            <td>EMEA</td>
            <td>13.6M</td>
        </tr>
        <tr>
            <td>PubMed</td>
            <td>8.4M</td>
        </tr>
        <tr>
            <td>Medical Crawler</td>
            <td>918M</td>
        </tr>
        <tr>
            <td>SPACC</td>
            <td>350K</td>
        </tr>
        <tr>
            <td>UFAL</td>
            <td>10.5M</td>
        </tr>
        <tr>
            <td>WikiMed</td>
            <td>5.2M</td>
        </tr>
        <tr>
            <td rowspan="5">French</td>
            <td>PubMed</td>
            <td>1.4M</td>
        </tr>
        <tr>
            <td>Science Direct</td>
            <td>15.2M</td>
        </tr>
        <tr>
            <td>Wikipedia - Médecine</td>
            <td>5M</td>
        </tr>
        <tr>
            <td>EDP</td>
            <td>48K</td>
        </tr>
        <tr>
            <td>Google Patents</td>
            <td>654M</td>
        </tr>
        <tr>
            <td rowspan="13">Italian</td>
            <td>Medical Commoncrawl - IT</td>
            <td>67M</td>
        </tr>
        <tr>
            <td>Drug instructions</td>
            <td>30.5M</td>
        </tr>
        <tr>
            <td>Wikipedia - Medicina</td>
            <td>13.3M</td>
        </tr>
        <tr>
            <td>E3C Corpus - IT</td>
            <td>11.6M</td>
        </tr>
        <tr>
            <td>Medicine descriptions</td>
            <td>6.3M</td>
        </tr>
        <tr>
            <td>Medical theses</td>
            <td>5.8M</td>
        </tr>
        <tr>
            <td>Medical websites</td>
            <td>4M</td>
        </tr>
        <tr>
            <td>PubMed</td>
            <td>2.3M</td>
        </tr>
        <tr>
            <td>Supplement description</td>
            <td>1.3M</td>
        </tr>
        <tr>
            <td>Medical notes</td>
            <td>975K</td>
        </tr>
        <tr>
            <td>Pathologies</td>
            <td>157K</td>
        </tr>
        <tr>
            <td>Medical test simulations</td>
            <td>26K</td>
        </tr>
        <tr>
            <td>Clinical cases</td>
            <td>20K</td>
        </tr>
    </tbody>
</table>

# Open Source Models trained with Multilingual-Medical-Corpus:
<table border="1" cellspacing="0" cellpadding="5">
    <thead>
        <tr>
            <th></th>
            <th><a href="https://huggingface.co/HiTZ/Medical-mT5-large">HiTZ/Medical-mT5-large</a></th>
            <th><a href="https://huggingface.co/HiTZ/Medical-mT5-xl">HiTZ/Medical-mT5-xl</a></th>
            <th><a href="https://huggingface.co/HiTZ/Medical-mT5-large-multitask">HiTZ/Medical-mT5-large-multitask</a></th>
            <th><a href="https://huggingface.co/HiTZ/Medical-mT5-xl-multitask">HiTZ/Medical-mT5-xl-multitask</a></th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td>Param. no.</td>
            <td>738M</td>
            <td>3B</td>
            <td>738M</td>
            <td>3B</td>
        </tr>
        <tr>
            <td>Task</td>
            <td>Language Modeling</td>
            <td>Language Modeling</td>
            <td>Multitask Sequence Labeling</td>
            <td>Multitask Sequence Labeling</td>
        </tr>
        <tr>
    </tbody>
</table>

## Citation

```bibtext
@misc{garcíaferrero2024medical,
      title={Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain}, 
      author={Iker García-Ferrero and Rodrigo Agerri and Aitziber Atutxa Salazar and Elena Cabrio and Iker de la Iglesia and Alberto Lavelli and Bernardo Magnini and Benjamin Molinet and Johana Ramirez-Romero and German Rigau and Jose Maria Villa-Gonzalez and Serena Villata and Andrea Zaninello},
      year={2024},
      eprint={2404.07613},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```