--- language: - en - es - fr - it license: apache-2.0 pretty_name: Multilingual Medical Corpus tags: - medical dataset_info: features: - name: text dtype: string splits: - name: en num_bytes: 7672665166 num_examples: 21226237 - name: es num_bytes: 6245812986 num_examples: 35444286 - name: fr num_bytes: 4763269707 num_examples: 7192779 - name: it num_bytes: 1021535232 num_examples: 3504555 download_size: 10530951092 dataset_size: 19703283091 configs: - config_name: default data_files: - split: en path: data/en-* - split: es path: data/es-* - split: fr path: data/fr-* - split: it path: data/it-* ---


Mutilingual Medical Corpus

Multilingual-Medical-Corpus a 3 billion word multilingual corpus for training LLMs adapted to the medical domain. Multilingual-Medical-Corpus includes four languages, namely, English, Spanish, French, and Italian.

- 📖 Paper: [Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain]() - 🌐 Project Website: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote) # Corpus Description - **Developed by**: Iker García-Ferrero, Rodrigo Agerri, Aitziber Atutxa Salazar, Elena Cabrio, Iker de la Iglesia, Alberto Lavelli, Bernardo Magnini, Benjamin Molinet, Johana Ramirez-Romero, German Rigau, Jose Maria Villa-Gonzalez, Serena Villata and Andrea Zaninello - **Contact**: [Iker García-Ferrero](https://ikergarcia1996.github.io/Iker-Garcia-Ferrero/) and [Rodrigo Agerri](https://ragerri.github.io/) - **Website**: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote) - **Funding**: CHIST-ERA XAI 2019 call. Antidote (PCI2020-120717-2) funded by MCIN/AEI /10.13039/501100011033 and by European Union NextGenerationEU/PRTR - **Language(s) (NLP)**: English, Spanish, French, Italian - **License**: apache-2.0 ## English Split | Source | Words | |-----------------|----------------| | ClinicalTrials | 127.4M | | EMEA | 12M | | PubMed | 968.4M | ## Spanish Split | Source | Words | |-----------------|----------------| | EMEA | 13.6M | | PubMed | 8.4M | | Medical Crawler | 918M | | SPACC | 350K | | UFAL | 10.5M | | WikiMed | 5.2M | ## French Split | Source | Words | |----------------------|----------------| | PubMed | 1.4M | | Science Direct | 15.2M | | Wikipedia - Médecine | 5M | | EDP | 48K | | Google Patents | 654M | ## Italian Split | Source | Words | |--------------------------|----------------| | Medical Commoncrawl - IT | 67M | | Drug instructions | 30.5M | | Wikipedia - Medicina | 13.3M | | E3C Corpus - IT | 11.6M | | Medicine descriptions | 6.3M | | Medical theses | 5.8M | | Medical websites | 4M | | PubMed | 2.3M | | Supplement description | 1.3M | | Medical notes | 975K | | Pathologies | 157K | | Medical test simulations | 26K | | Clinical cases | 20K | ## Citation We will soon release a paper, but, for now, you can use: ```bibtext @inproceedings{medical-mt5, title = "{{Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain}}", author = "{Iker García-Ferrero and Rodrigo Agerri and Aitziber Atutxa Salazar and Elena Cabrio and Iker de la Iglesia and Alberto Lavelli and Bernardo Magnini and Benjamin Molinet and Johana Ramirez-Romero and German Rigau and Jose Maria Villa-Gonzalez and Serena Villata and Andrea Zaninello}", publisher = "Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING)", year = 2024 } ```