File size: 6,675 Bytes
515ef21 7e55fc5 daa5d93 c130a23 daa5d93 0c23476 d9428b7 0c23476 d9428b7 0c23476 daa5d93 0c23476 d9428b7 daa5d93 0c23476 45fc37c 0c23476 daa5d93 0a0af15 d9428b7 0c23476 d9428b7 0c23476 d9428b7 daa5d93 0c23476 d9428b7 0c23476 d9428b7 0c23476 d9428b7 0c23476 d9428b7 daa5d93 0c23476 d9428b7 0c23476 d9428b7 0c23476 daa5d93 d9428b7 62cff14 0c23476 62cff14 a14dc92 4ad42ff 0c23476 07fec59 0a0af15 a14dc92 07fec59 0c23476 a14dc92 0c23476 0a0af15 0c23476 a14dc92 0c23476 62cff14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
---
license: cc-by-nc-4.0
language:
- eu
pretty_name: XNLI EU
size_categories:
- 1K<n<10K
dataset_info:
- config_name: eu
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
- config_name: eu_mt
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
- config_name: eu_native
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
configs:
- config_name: eu
data_files:
- split: train
path: xnli.train.eu.mt.tsv
- split: validation
path: xnli.dev.eu.tsv
- split: test
path: xnli.test.eu.tsv
- config_name: eu_mt
data_files:
- split: train
path: xnli.train.eu.mt.tsv
- split: validation
path: xnli.dev.eu.mt.tsv
- split: test
path: xnli.test.eu.mt.tsv
- config_name: eu_native
data_files:
- split: test
path: xnli.test.eu.native.tsv
task_categories:
- text-classification
---
# Dataset Card for XNLIeu
<!-- Provide a quick summary of the dataset. -->
XNLIeu is an extension of [XNLI](https://huggingface.co/datasets/xnli) translated from English to **Basque**. It has been designed as a cross-lingual dataset for the Natural Language Inference task, a text-classification task that consists on classifying pairs of sentences, a premise and a hypothesis, according to their semantic relation out of three possible labels: entailment, contradiction and neutral.
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
XNLI is a popular Natural Language Inference (NLI) benchmark widely used to evaluate cross-lingual Natural Language Understanding (NLU) capabilities across languages.
We expand XNLI to include Basque, a low-resource language that can greatly benefit from transfer-learning approaches.
The new dataset, dubbed XNLIeu, has been developed by first machine-translating the English XNLI corpus into Basque, followed by a manual post-edition step.
- **Language(s) (NLP):** Basque (eu)
- **License:** XNLIeu is derived from XNLI and distributed under its same license.
### Dataset Sources
<!-- Provide the basic links for the dataset. -->
- **Repository:** [Link to the GitHub Repository](https://github.com/hitz-zentroa/xnli-eu/)
- **Paper:** [Link to the Paper](https://aclanthology.org/2024.naacl-long.234/)
## Uses
XNLieu is meant as an cross-lingual evaluation dataset. It can be used in combination with the train sets of [XNLI](https://huggingface.co/datasets/xnli) for a cross-lingual zero-shot setting, and we provide a machine-translated train set in both "eu" and "eu_mt" splits to implement a translate-train setting.
## Dataset Structure
The dataset has three subsets:
- **eu**: XNLIeu, machine-translated and post-edited from English to Basque.
- **eu_MT**: XNLIeu<sub>MT</sub>, a machine-translated version prior post-edition.
- **eu_native**: An original, non-translated test set.
### Splits
| name |train |validation|test|
|-------------|-----:|---------:|---:|
|eu |392702| 2490|5010|
|eu_mt |392702| 2490|5010|
|eu_native |- | - |621 |
### Dataset Fields
All splits have the same fields: *premise*, *hypothesis* and *label*.
- **premise**: a string variable.
- **hypothesis**: a string variable.
- **label**: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).
### Dataset Instances
An example from the "eu" split:
```
{
"premise": "Dena idazten saiatu nintzen"
"hypothesis": "Nire helburua gauzak idaztea zen.",
"label": 0,
}
```
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
The biases of this dataset have been studied and reported in the paper.
<!--## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section.
RELLENAR-->
**BibTeX:**
```
@inproceedings{heredia-etal-2024-xnlieu,
title = "{XNLI}eu: a dataset for cross-lingual {NLI} in {B}asque",
author = "Heredia, Maite and
Etxaniz, Julen and
Zulaika, Muitze and
Saralegi, Xabier and
Barnes, Jeremy and
Soroa, Aitor",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-long.234",
pages = "4177--4188",
abstract = "XNLI is a popular Natural Language Inference (NLI) benchmark widely used to evaluate cross-lingual Natural Language Understanding (NLU) capabilities across languages. In this paper, we expand XNLI to include Basque, a low-resource language that can greatly benefit from transfer-learning approaches. The new dataset, dubbed XNLIeu, has been developed by first machine-translating the English XNLI corpus into Basque, followed by a manual post-edition step. We have conducted a series of experiments using mono- and multilingual LLMs to assess a) the effect of professional post-edition on the MT system; b) the best cross-lingual strategy for NLI in Basque; and c) whether the choice of the best cross-lingual strategy is influenced by the fact that the dataset is built by translation. The results show that post-edition is necessary and that the translate-train cross-lingual strategy obtains better results overall, although the gain is lower when tested in a dataset that has been built natively from scratch. Our code and datasets are publicly available under open licenses.",
}
```
**APA:**
Heredia, M., Etxaniz, J., Zulaika, M., Saralegi, X., Barnes, J., & Soroa, A. (2024). XNLIeu: a dataset for cross-lingual NLI in Basque. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers) (pp. 4177–4188). Association for Computational Linguistics.
<!--
## Dataset Card Contact
[More Information Needed]--> |