Datasets:
HiTZ
/

Modalities:
Text
Formats:
csv
Languages:
Basque
Libraries:
Datasets
pandas
License:
File size: 6,675 Bytes
515ef21
 
 
 
 
 
 
7e55fc5
daa5d93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c130a23
daa5d93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c23476
d9428b7
0c23476
 
 
d9428b7
0c23476
 
 
 
 
 
daa5d93
 
 
0c23476
d9428b7
daa5d93
0c23476
45fc37c
0c23476
 
 
daa5d93
0a0af15
d9428b7
0c23476
 
d9428b7
0c23476
d9428b7
daa5d93
 
 
 
 
0c23476
d9428b7
0c23476
d9428b7
 
 
 
 
0c23476
 
d9428b7
0c23476
d9428b7
daa5d93
 
 
0c23476
d9428b7
0c23476
d9428b7
 
 
 
 
 
 
 
 
0c23476
 
 
 
 
 
daa5d93
d9428b7
62cff14
0c23476
62cff14
a14dc92
4ad42ff
0c23476
07fec59
0a0af15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a14dc92
07fec59
0c23476
a14dc92
0c23476
0a0af15
0c23476
a14dc92
0c23476
 
62cff14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
---
license: cc-by-nc-4.0
language:
- eu
pretty_name: XNLI EU
size_categories:
- 1K<n<10K
dataset_info:
- config_name: eu
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
- config_name: eu_mt
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
- config_name: eu_native
  features:
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': entailment
          '1': neutral
          '2': contradiction
configs:
- config_name: eu
  data_files:
  - split: train
    path: xnli.train.eu.mt.tsv
  - split: validation
    path: xnli.dev.eu.tsv
  - split: test
    path: xnli.test.eu.tsv
- config_name: eu_mt
  data_files:
  - split: train
    path: xnli.train.eu.mt.tsv
  - split: validation
    path: xnli.dev.eu.mt.tsv
  - split: test
    path: xnli.test.eu.mt.tsv
- config_name: eu_native
  data_files:
  - split: test
    path: xnli.test.eu.native.tsv
task_categories:
- text-classification
---
# Dataset Card for XNLIeu

<!-- Provide a quick summary of the dataset. -->

XNLIeu is an extension of [XNLI](https://huggingface.co/datasets/xnli) translated from English to **Basque**. It has been designed as a cross-lingual dataset for the Natural Language Inference task, a text-classification task that consists on classifying pairs of sentences, a premise and a hypothesis, according to their semantic relation out of three possible labels: entailment, contradiction and neutral.

## Dataset Details

### Dataset Description

<!-- Provide a longer summary of what this dataset is. -->
XNLI is a popular Natural Language Inference (NLI) benchmark widely used to evaluate cross-lingual Natural Language Understanding (NLU) capabilities across languages. 
We expand XNLI to include Basque, a low-resource language that can greatly benefit from transfer-learning approaches. 
The new dataset, dubbed XNLIeu, has been developed by first machine-translating the English XNLI corpus into Basque, followed by a manual post-edition step.

- **Language(s) (NLP):** Basque (eu)
- **License:** XNLIeu is derived from XNLI and distributed under its same license. 

### Dataset Sources

<!-- Provide the basic links for the dataset. -->

- **Repository:** [Link to the GitHub Repository](https://github.com/hitz-zentroa/xnli-eu/)
- **Paper:** [Link to the Paper](https://aclanthology.org/2024.naacl-long.234/)

## Uses

XNLieu is meant as an cross-lingual evaluation dataset. It can be used in combination with the train sets of [XNLI](https://huggingface.co/datasets/xnli) for a cross-lingual zero-shot setting, and we provide a machine-translated train set in both "eu" and "eu_mt" splits to implement a translate-train setting.

## Dataset Structure
The dataset has three subsets:
- **eu**: XNLIeu, machine-translated and post-edited from English to Basque.
- **eu_MT**: XNLIeu<sub>MT</sub>, a machine-translated version prior post-edition.
- **eu_native**: An original, non-translated test set.


### Splits

|    name     |train |validation|test|
|-------------|-----:|---------:|---:|
|eu           |392702|      2490|5010|
|eu_mt        |392702|      2490|5010|
|eu_native    |-     |      -   |621 |


### Dataset Fields

All splits have the same fields: *premise*, *hypothesis* and *label*.
- **premise**: a string variable.
- **hypothesis**: a string variable.
- **label**: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).

### Dataset Instances

An example from the "eu" split:

```
{
    "premise": "Dena idazten saiatu nintzen"
    "hypothesis": "Nire helburua gauzak idaztea zen.",
    "label": 0,
}
```



## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->
The biases of this dataset have been studied and reported in the paper.

<!--## Citation 

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section.
RELLENAR-->

**BibTeX:**
```
@inproceedings{heredia-etal-2024-xnlieu,
    title = "{XNLI}eu: a dataset for cross-lingual {NLI} in {B}asque",
    author = "Heredia, Maite  and
      Etxaniz, Julen  and
      Zulaika, Muitze  and
      Saralegi, Xabier  and
      Barnes, Jeremy  and
      Soroa, Aitor",
    editor = "Duh, Kevin  and
      Gomez, Helena  and
      Bethard, Steven",
    booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
    month = jun,
    year = "2024",
    address = "Mexico City, Mexico",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.naacl-long.234",
    pages = "4177--4188",
    abstract = "XNLI is a popular Natural Language Inference (NLI) benchmark widely used to evaluate cross-lingual Natural Language Understanding (NLU) capabilities across languages. In this paper, we expand XNLI to include Basque, a low-resource language that can greatly benefit from transfer-learning approaches. The new dataset, dubbed XNLIeu, has been developed by first machine-translating the English XNLI corpus into Basque, followed by a manual post-edition step. We have conducted a series of experiments using mono- and multilingual LLMs to assess a) the effect of professional post-edition on the MT system; b) the best cross-lingual strategy for NLI in Basque; and c) whether the choice of the best cross-lingual strategy is influenced by the fact that the dataset is built by translation. The results show that post-edition is necessary and that the translate-train cross-lingual strategy obtains better results overall, although the gain is lower when tested in a dataset that has been built natively from scratch. Our code and datasets are publicly available under open licenses.",
}
```

**APA:**

Heredia, M., Etxaniz, J., Zulaika, M., Saralegi, X., Barnes, J., & Soroa, A. (2024). XNLIeu: a dataset for cross-lingual NLI in Basque. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers) (pp. 4177–4188). Association for Computational Linguistics.

<!--
## Dataset Card Contact

[More Information Needed]-->