#### 7.5 ControlNet的结构与训练过程 经过了之前的章节学习之后,相信你已经能够熟练的使用prompt来描述并生成一幅精美的画作了。通常来说,Prompt的准确性越高、描述的越丰富,生成的画作也会越符合你心目中的样子。 然而你也许也注意到了一件事:无论我们再怎么精细的使用prompt来指导Stable diffusion模型,也无法描述清楚人物四肢的角度、背景中物体的位置、每一缕光线照射的角度等等。文字的能力是有极限的! 为了成为一个更加优秀的AI画手,我们需要突破文字提示(Text conditioning),找到一种能够通过图像特征来为扩散模型的生成过程提供更加精细的控制的方式,也就是:图像提示(Image Conditioning) 幸运的是,我们恰好已经有了这样的工具:[ControlNet](https://arxiv.org/abs/2302.05543) ControlNet是一种能够嵌入任意已经训练好的扩散模型中,为这些模型提供更多控制条件的神经网络结构。其基本结构如下图所示: ![图片](./files/structure.png) 如图所示,ControlNet的基本结构由一个对应的原本扩散模型的block和两个“零卷积”层组成。在之后的训练过程中,我们会“锁死”原本网络的权重,只更新ControlNet结构中的网路“副本”和零卷积层的权重。 这些可训练的神经网络“副本”将学会如何让模型按照新的控制条件来生成结果,而被“锁死”的网络原本则会保留原先网络已经学会的所有知识。 这样,即使用来训练ControlNet的训练集规模较小,被“锁死”的网络原本的权重也能确保扩散模型本身的生成效果不受影响。 在ControlNet中的这些“零卷积层”则是一些weight和bias权重都被初始化为0的 1×1 卷积层。在训练刚开始的时候,无论新添加的控制条件是什么,这些“零卷积”层都只会输出0,因此ControlNet将不会对扩散模型的生成结果造成任何影响。 而随着训练过程的深入,ControlNet部分将学会逐渐调整扩散模型原本的生成过程,使得生成的图像逐渐向新添加的控制条件靠近。 你也许会问,如果一个卷积层的所有参数都为0,输出结果也为0,那么它怎么才能正常的进行权重的迭代过程呢?为了回答这个问题,我们给出一个简单的数学推导过程: 假设我们有一个简单的神经网络层: $$y=wx+b$$ 那么我们知道: $$\partial y/\partial w=x, \partial y/\partial x=w, \partial y/\partial b=1$$ 假设其中的权重w为0,输入x不为0,那么我们就有: $$\partial y/\partial w \neq 0, \partial y/\partial x=0, \partial y/\partial b\neq 0$$ 这意味着只要输入x不为0,梯度下降的迭代过程就能正常的更新权重w,使其不再为0。那么我们将会得到: $$\partial y/\partial x\neq 0$$ 也就是说,经过若干次迭代步骤以后,这些零卷积将会逐渐变成一个有着正常权重的普通卷积层。 将上面所描述的ControlNet Block堆叠十四次以后,我们就能获得了一个完整的、能够用来对稳定扩散模型添加新的控制的条件的ControlNet: ![图片](./files/structure2.png) 仔细研究过这个结构以后,你就会发现,Controlnet实际上使用了训练完成的稳定扩散模型的encoder模块,来作为自己的主干网络。而这样的一个稳定而又强力的主干网络,则保证了ControlNet能够学到更多不同的控制图像生成的方法。 训练一个附加在某个稳定扩散模型上的ControlNet的过程大致如下: 1. 收集你所想要的附加控制条件的数据集和对应prompt。假如你想训练一个通过人体关键点来对扩散模型生成的人体进行姿态控制的ControlNet,你需要先收集一批人物的图片,并标注好这些图片的prompt以及对应的人体的关键点的位置。 2. 将prompt输入被“锁死”的稳定扩散模型,将标注好的图像控制条件(例如人体关键点的标注结果)输入ControlNet模型,然后按照稳定扩散模型的训练过程迭代ControlNet模型的权重。 3. 训练过程中会随机的将50%的文字提示替换为空白字符串,这样能够“强迫”网络更多的从图像控制条件中学会更多的语义信息。 4. 训练结束以后,我们就可以使用该ControlNet对应的图像控制条件(例如输入人体骨骼关键点),来控制扩散模型生成符合条件的图像了。 请注意,因为在该训练过程中原本的扩散模型的权重不会产生任何梯度(我们锁死了这一部分!),所以即使我们添加了十四个ControlNet blocks,整个训练过程也不会需要比训练原先扩散模型更多的显存。 #### 7.6 ControlNet示例 我们在本章节将展示一些已经训练好的ControlNet的示例,这些图片都来自ControlNet的github repo:https://github.com/lllyasviel/ControlNet。 你可以在HuggingFace上找到这些由ControlNet的原作者提供的模型:https://huggingface.co/lllyasviel/ControlNet。 以下图片中左上角的图像为ControlNet的额外控制条件的输入图像,右侧的图像则为给定条件下稳定扩散模型的生成结果。 ##### ControlNet 与 Canny Edge Canny edge 检测器是由 John F. Canny 于1986年发明的一种多阶段的边缘检测算法。该算法可以从不同的视觉对象中提取有用的结构信息,从而显著降低图像处理过程中的数据处理量。 Prompt:"bird" ![图片](./files/canny.png) ##### ControlNet 与 M-LSD Lines M-LSD Lines 是另外一种轻量化边缘检测算法,比较擅长提取图像中的直线线条。训练在M-LSD Lines上的ControlNet很适合生成室内环境的图片。 Prompt: "room" ![图片](./files/canny.png) ##### ControlNet 与 HED Boundary Soft HED Boundary 能够保存输入图片更多的细节,训练在HED Boundary上的ControlNet很适合用来重新上色和风格重构。 Prompt: "oil painting of handsome old man, masterpiece" ![图片](./files/hed.png) ##### ControlNet 与 涂鸦画 ControlNet 的强大能力甚至不使用任何真实图片提取的信息也能生成高质量的结果。训练在涂鸦数据上的ControlNet能让稳定扩散模型学会如何将儿童涂鸦转绘成高质量的图片。 Prompt: "turtle" ##### ControlNet 与 人体关键点 训练在人体关键点数据上的ControlNet,能让扩散模型学会生成指定姿态的人体。 Prompt: "Chief in the kitchen" ![图片](./files/humanpose.png) ##### ControlNet 与 语义分割 语义分割模型是一种提取图像中各个区域语义信息的一种模型,常用来对图像中人体、物体、背景的区域进行划分。训练在语义分割数据上的ControlNet适合让稳定扩散模型来生成特定结构的场景图。 Prompt: "House" ![图片](./files/segmentation.png) 此外还有诸如深度图、Normal Map、人脸关键点等等不同的ControlNet可以使用,我们在这里就不再一一列举了,读者可以自行在HuggingFace上寻找开源模型和示例。 #### 7.7 ControlNet实战练习 在本章节中,我们将以Canny Edge为例,展示如何在diffusers中使用 StableDiffusionControlNetPipeline 来生成图像。 首先我们先运行以下代码来安装需要使用的库: ```python !pip install -q diffusers==0.14.0 transformers xformers git+https://github.com/huggingface/accelerate.git ``` 对应选择的ControlNet,我们还需要安装两个依赖库用来对图像进行处理,以提取不同的图像控制条件。 - [OpenCV](https://opencv.org/) - [controlnet-aux](https://github.com/patrickvonplaten/controlnet_aux#controlnet-auxiliary-models) - 一个简单的ControlNet前处理模型集合 ```python !pip install -q opencv-contrib-python !pip install -q controlnet_aux ``` 让我们来使用这个著名的 ["戴珍珠耳环的少女"](https://en.wikipedia.org/wiki/Girl_with_a_Pearl_Earring) 来做示范: ```python from diffusers import StableDiffusionControlNetPipeline from diffusers.utils import load_image image = load_image( "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png" ) image ``` ![图片](./files/girlwithperl.png) 首先将这张图像送入Canny Edge 边缘提取器做一下前处理: ```python import cv2 from PIL import Image import numpy as np image = np.array(image) low_threshold = 100 high_threshold = 200 image = cv2.Canny(image, low_threshold, high_threshold) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) canny_image = Image.fromarray(image) canny_image ``` ![图片](./files/girlwithperl_canny.png) 你可以看到,Canny Edge基本上就是一个边缘提取器,能够识别出图像中物体的边缘线条。 接下来我们需要载入runwaylml/stable-diffusion-v1-5模型和能够处理Canny Edge的ControlNet模型。为了节约计算资源以及加快推理速度,我们使用半精度(torch.dtype)的方式来读取模型。 ```python from diffusers import StableDiffusionControlNetPipeline, ControlNetModel import torch controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16) pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 ) ``` 这本次实验中,我们会尝试使用一种当前最快的扩散模型调度器:UniPCMultistepScheduler。这个调度器能够显著加快模型的推理速度,只需要迭代20次就能达到与之前的默认调度器迭代50次相同的效果! ```python from diffusers import UniPCMultistepScheduler pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) ``` 现在我们已经做好运行这个ControlNet管道的准备了。如同之前我们在通常使用的稳定扩散模型中做的那样,在ControlNet的运行流程中,我们仍然需要提供一些文字描述(prompt)来指导图像的生成过程。 但是ControlNet将允许我们对生成图像的过程应用一些额外的控制条件,例如我们即将使用的Canny Edge来控制生成的图像中的物体的确切位置和边缘轮廓。 我们将用接下来的代码来生成一些人物的肖像画,而这些人物的姿势将于这副17世纪的著名画作中的少女摆出相同的姿势。在ControlNet和Canny Edge的帮助下,我们只需要在文字描述中提到这些名人的名字就可以了! ```python def image_grid(imgs, rows, cols): assert len(imgs) == rows * cols w, h = imgs[0].size grid = Image.new("RGB", size=(cols * w, rows * h)) grid_w, grid_h = grid.size for i, img in enumerate(imgs): grid.paste(img, box=(i % cols * w, i // cols * h)) return grid prompt = ", best quality, extremely detailed" prompt = [t + prompt for t in ["Sandra Oh", "Kim Kardashian", "rihanna", "taylor swift"]] generator = [torch.Generator(device="cpu").manual_seed(2) for i in range(len(prompt))] output = pipe( prompt, canny_image, negative_prompt=["monochrome, lowres, bad anatomy, worst quality, low quality"] * len(prompt), generator=generator, num_inference_steps=20, ) image_grid(output.images, 2, 2) ``` ![图片](./files/image_grid.png) 接下来让我们尝试一下ControlNet的另一个有趣的应用方式:从一张图像中提取一个身体姿态,然后用它来生成具有完全相同姿态的另一张图像。 在接下来的下一个例子中,我们将教会超级英雄如何使用[Open Pose ControlNet](https://huggingface.co/lllyasviel/sd-controlnet-openpose)做瑜伽! 首先,让我们来找一些人们做瑜伽的图片: ```python urls = "yoga1.jpeg", "yoga2.jpeg", "yoga3.jpeg", "yoga4.jpeg" imgs = [ load_image("https://hf.co/datasets/YiYiXu/controlnet-testing/resolve/main/" + url) for url in urls ] image_grid(imgs, 2, 2) ``` ![图片](./files/yoga.png) 然后我们将使用controlnet_aux中的OpenPose预处理器来提取瑜伽的身体姿势。 ```python from controlnet_aux import OpenposeDetector model = OpenposeDetector.from_pretrained("lllyasviel/ControlNet") poses = [model(img) for img in imgs] image_grid(poses, 2, 2) ``` ![图片](./files/yogapose.png) 最后就是见证奇迹的时刻!我们将使用 Open Pose ControlNet来生成一些正在做瑜伽的超级英雄的图像。 ```python controlnet = ControlNetModel.from_pretrained( "fusing/stable-diffusion-v1-5-controlnet-openpose", torch_dtype=torch.float16 ) model_id = "runwayml/stable-diffusion-v1-5" pipe = StableDiffusionControlNetPipeline.from_pretrained( model_id, controlnet=controlnet, torch_dtype=torch.float16, ) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.enable_xformers_memory_efficient_attention() generator = [torch.Generator(device="cpu").manual_seed(2) for i in range(4)] prompt = "super-hero character, best quality, extremely detailed" output = pipe( [prompt] * 4, poses, negative_prompt=["monochrome, lowres, bad anatomy, worst quality, low quality"] * 4, generator=generator, num_inference_steps=20, ) image_grid(output.images, 2, 2) ``` ![图片](./files/superhero.png) 在上面的例子中, 我们探索了两种[`StableDiffusionControlNetPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/controlnet) 的使用方式, 展示了ControlNet和扩散模型相结合的强大能力。 这里的两个例子只是ControlNet能够提供的额外图像控制条件中的一小部分,如果感兴趣的话,你可以在以下这些模型的文档页面寻找更多有趣的使用ControlNet的方式: * lllyasviel/sd-controlnet-depth:https://huggingface.co/lllyasviel/sd-controlnet-depth * lllyasviel/sd-controlnet-hed:https://huggingface.co/lllyasviel/sd-controlnet-hed * lllyasviel/sd-controlnet-normal:https://huggingface.co/lllyasviel/sd-controlnet-normal * lllyasviel/sd-controlnet-scribble:https://huggingface.co/lllyasviel/sd-controlnet-scribble * lllyasviel/sd-controlnet-seg:https://huggingface.co/lllyasviel/sd-controlnet-scribble * lllyasviel/sd-controlnet-openpose:https://huggingface.co/lllyasviel/sd-controlnet-openpose * lllyasviel/sd-controlnet-mlsd:https://huggingface.co/lllyasviel/sd-controlnet-mlsd * lllyasviel/sd-controlnet-mlsd:https://huggingface.co/lllyasviel/sd-controlnet-canny