Datasets:
File size: 14,735 Bytes
3d799f3 e4f5f2b 3d799f3 af075be 3d799f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
# ruff: noqa: F405, F403, F401
"""
Custom evaluation tasks for lighteval
Do note that we ran the evals with `max_samples=1000` to speed up large evals.
Most custom prompt changes were in an attempt to improve signal for small models in general.
This file generally creates just a TASKS_TABLE and TASKS_GROUPS which are then imported by LightEval.
Example usage (lighteval_tasks.py is the path to this file):
===================
accelerate launch --num_processes=1 lighteval/run_evals_accelerate.py --model_args="pretrained=HuggingFaceFW/ablation-model-fineweb-edu" \
--custom_tasks "lighteval_tasks.py" --output_dir [OUTPUTPATH] --max_samples 1000 \
--tasks "custom|hellaswag|0|1,custom|winogrande|0|1,custom|piqa|0|1,custom|siqa|0|1,custom|openbookqa|0|1,custom|arc:easy|0|1,custom|arc:challenge|0|1,custom|commonsense_qa|0|1,custom|mmlu:abstract_algebra|0|1,custom|mmlu:anatomy|0|1,custom|mmlu:astronomy|0|1,custom|mmlu:business_ethics|0|1,custom|mmlu:clinical_knowledge|0|1,custom|mmlu:college_biology|0|1,custom|mmlu:college_chemistry|0|1,custom|mmlu:college_computer_science|0|1,custom|mmlu:college_mathematics|0|1,custom|mmlu:college_medicine|0|1,custom|mmlu:college_physics|0|1,custom|mmlu:computer_security|0|1,custom|mmlu:conceptual_physics|0|1,custom|mmlu:econometrics|0|1,custom|mmlu:electrical_engineering|0|1,custom|mmlu:elementary_mathematics|0|1,custom|mmlu:formal_logic|0|1,custom|mmlu:global_facts|0|1,custom|mmlu:high_school_biology|0|1,custom|mmlu:high_school_chemistry|0|1,custom|mmlu:high_school_computer_science|0|1,custom|mmlu:high_school_european_history|0|1,custom|mmlu:high_school_geography|0|1,custom|mmlu:high_school_government_and_politics|0|1,custom|mmlu:high_school_macroeconomics|0|1,custom|mmlu:high_school_mathematics|0|1,custom|mmlu:high_school_microeconomics|0|1,custom|mmlu:high_school_physics|0|1,custom|mmlu:high_school_psychology|0|1,custom|mmlu:high_school_statistics|0|1,custom|mmlu:high_school_us_history|0|1,custom|mmlu:high_school_world_history|0|1,custom|mmlu:human_aging|0|1,custom|mmlu:human_sexuality|0|1,custom|mmlu:international_law|0|1,custom|mmlu:jurisprudence|0|1,custom|mmlu:logical_fallacies|0|1,custom|mmlu:machine_learning|0|1,custom|mmlu:management|0|1,custom|mmlu:marketing|0|1,custom|mmlu:medical_genetics|0|1,custom|mmlu:miscellaneous|0|1,custom|mmlu:moral_disputes|0|1,custom|mmlu:moral_scenarios|0|1,custom|mmlu:nutrition|0|1,custom|mmlu:philosophy|0|1,custom|mmlu:prehistory|0|1,custom|mmlu:professional_accounting|0|1,custom|mmlu:professional_law|0|1,custom|mmlu:professional_medicine|0|1,custom|mmlu:professional_psychology|0|1,custom|mmlu:public_relations|0|1,custom|mmlu:security_studies|0|1,custom|mmlu:sociology|0|1,custom|mmlu:us_foreign_policy|0|1,custom|mmlu:virology|0|1,custom|mmlu:world_religions|0|1"
===================
More info here: https://github.com/huggingface/lighteval?tab=readme-ov-file#evaluate-a-model-on-extended-community-or-custom-tasks
For more info on differences between MMLU implementations: https://huggingface.co/blog/open-llm-leaderboard-mmlu#1001-flavors-of-mmlu
In particular, the default leaderboard MMLU implementation (which uses "A", "B", etc as answer targets) gives generally random results on small/non instruction tuned models.
Instead, we use the full MMLU answer as the target.
"""
import re
from typing import List, Tuple
from lighteval.metrics import Metrics
from lighteval.tasks.lighteval_task import LightevalTaskConfig
from lighteval.tasks.requests import Doc
from lighteval.tasks.tasks_prompt_formatting import LETTER_INDICES
_TASKS_STRINGS: List[Tuple[LightevalTaskConfig, str]] = []
_TASKS: List[LightevalTaskConfig] = []
## COMMON_SENSE_REASONING_TASKS ##
COMMON_SENSE_REASONING_TASKS = [
LightevalTaskConfig(
name="hellaswag",
prompt_function="hellaswag_prompt",
hf_repo="hellaswag",
hf_subset="default",
metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
),
LightevalTaskConfig(
name="winogrande",
prompt_function="winogrande",
hf_repo="winogrande",
hf_subset="winogrande_xl",
metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
),
LightevalTaskConfig(
name="piqa",
prompt_function="piqa_harness",
hf_repo="piqa",
hf_subset="plain_text",
metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
),
LightevalTaskConfig(
name="siqa",
prompt_function="siqa_prompt",
hf_repo="lighteval/siqa",
hf_subset="default",
hf_avail_splits=["train", "validation"],
metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
),
LightevalTaskConfig(
name="openbookqa",
prompt_function="openbookqa",
hf_repo="openbookqa",
hf_subset="main",
metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
),
LightevalTaskConfig(
name="arc:easy",
prompt_function="arc",
hf_repo="ai2_arc",
hf_subset="ARC-Easy",
evaluation_splits=["test"],
generation_size=1,
metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
),
LightevalTaskConfig(
name="arc:challenge",
prompt_function="arc",
hf_repo="ai2_arc",
hf_subset="ARC-Challenge",
evaluation_splits=["test"],
generation_size=1,
metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
),
LightevalTaskConfig(
name="commonsense_qa",
prompt_function="commonsense_qa_prompt",
hf_repo="commonsense_qa",
hf_subset="default",
metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
),
]
def commonsense_qa_prompt(line, task_name: str = None):
return Doc(
task_name=task_name,
query=line["question"],
choices=[f" {c}" for c in line["choices"]["text"]],
gold_index=LETTER_INDICES.index(line["answerKey"].strip()),
instruction="",
)
def siqa_prompt(line, task_name: str = None):
return Doc(
task_name=task_name,
query=line["context"] + " " + line["question"],
choices=[f" {c}" for c in [line["answerA"], line["answerB"], line["answerC"]]],
gold_index=int(line["label"]) - 1,
instruction="",
)
def hellaswag_prompt(line, task_name: str = None):
def preprocess(text):
"""Comes from AiHarness"""
# text = text.strip()
# NOTE: Brackets are artifacts of the WikiHow dataset portion of HellaSwag.
text = text.replace(" [title]", ". ")
text = re.sub("\\[.*?\\]", "", text)
text = text.replace(" ", " ")
return text
ctx = f"{line['ctx_a']} {line['ctx_b'].capitalize()} "
return Doc(
task_name=task_name,
query=preprocess(line["activity_label"] + ": " + ctx),
choices=[" " + preprocess(ending) for ending in line["endings"]],
gold_index=int(line["label"]) if line["label"] != "" else -1, # -1 for test
# "metric": "choices_loglikelihood",
)
# 0 short for common sense
COMMON_SENSE_REASONING_STRING = [(t, f"custom|{t.name}|0|1") for t in COMMON_SENSE_REASONING_TASKS]
_TASKS_STRINGS.extend(COMMON_SENSE_REASONING_STRING)
_TASKS += COMMON_SENSE_REASONING_TASKS
## MMLU ##
class CustomMMLUEvaluationTask(LightevalTaskConfig):
def __init__(
self,
name,
prompt_function="mmlu_prompt",
hf_repo="lighteval/mmlu",
hf_subset=None,
# metric=[Metrics.loglikelihood_acc_single_token],
metric=[Metrics.loglikelihood_acc, Metrics.loglikelihood_acc_norm_nospace],
hf_avail_splits=None,
evaluation_splits=["test"],
few_shots_split="dev",
few_shots_select=None,
suite=None,
generation_size=-1,
stop_sequence=None,
output_regex=None,
frozen=False,
):
super().__init__(
name=name,
prompt_function=prompt_function,
hf_repo=hf_repo,
hf_subset=hf_subset,
metric=metric,
hf_avail_splits=hf_avail_splits,
evaluation_splits=evaluation_splits,
few_shots_split=few_shots_split,
few_shots_select=few_shots_select,
suite=suite,
generation_size=generation_size,
stop_sequence=stop_sequence,
output_regex=output_regex,
frozen=frozen,
)
MMLU_TASKS = [
CustomMMLUEvaluationTask(name="mmlu:abstract_algebra", hf_subset="abstract_algebra"),
CustomMMLUEvaluationTask(name="mmlu:anatomy", hf_subset="anatomy"),
CustomMMLUEvaluationTask(name="mmlu:astronomy", hf_subset="astronomy"),
CustomMMLUEvaluationTask(name="mmlu:business_ethics", hf_subset="business_ethics"),
CustomMMLUEvaluationTask(name="mmlu:clinical_knowledge", hf_subset="clinical_knowledge"),
CustomMMLUEvaluationTask(name="mmlu:college_biology", hf_subset="college_biology"),
CustomMMLUEvaluationTask(name="mmlu:college_chemistry", hf_subset="college_chemistry"),
CustomMMLUEvaluationTask(name="mmlu:college_computer_science", hf_subset="college_computer_science"),
CustomMMLUEvaluationTask(name="mmlu:college_mathematics", hf_subset="college_mathematics"),
CustomMMLUEvaluationTask(name="mmlu:college_medicine", hf_subset="college_medicine"),
CustomMMLUEvaluationTask(name="mmlu:college_physics", hf_subset="college_physics"),
CustomMMLUEvaluationTask(name="mmlu:computer_security", hf_subset="computer_security"),
CustomMMLUEvaluationTask(name="mmlu:conceptual_physics", hf_subset="conceptual_physics"),
CustomMMLUEvaluationTask(name="mmlu:econometrics", hf_subset="econometrics"),
CustomMMLUEvaluationTask(name="mmlu:electrical_engineering", hf_subset="electrical_engineering"),
CustomMMLUEvaluationTask(name="mmlu:elementary_mathematics", hf_subset="elementary_mathematics"),
CustomMMLUEvaluationTask(name="mmlu:formal_logic", hf_subset="formal_logic"),
CustomMMLUEvaluationTask(name="mmlu:global_facts", hf_subset="global_facts"),
CustomMMLUEvaluationTask(name="mmlu:high_school_biology", hf_subset="high_school_biology"),
CustomMMLUEvaluationTask(name="mmlu:high_school_chemistry", hf_subset="high_school_chemistry"),
CustomMMLUEvaluationTask(name="mmlu:high_school_computer_science", hf_subset="high_school_computer_science"),
CustomMMLUEvaluationTask(name="mmlu:high_school_european_history", hf_subset="high_school_european_history"),
CustomMMLUEvaluationTask(name="mmlu:high_school_geography", hf_subset="high_school_geography"),
CustomMMLUEvaluationTask(
name="mmlu:high_school_government_and_politics", hf_subset="high_school_government_and_politics"
),
CustomMMLUEvaluationTask(name="mmlu:high_school_macroeconomics", hf_subset="high_school_macroeconomics"),
CustomMMLUEvaluationTask(name="mmlu:high_school_mathematics", hf_subset="high_school_mathematics"),
CustomMMLUEvaluationTask(name="mmlu:high_school_microeconomics", hf_subset="high_school_microeconomics"),
CustomMMLUEvaluationTask(name="mmlu:high_school_physics", hf_subset="high_school_physics"),
CustomMMLUEvaluationTask(name="mmlu:high_school_psychology", hf_subset="high_school_psychology"),
CustomMMLUEvaluationTask(name="mmlu:high_school_statistics", hf_subset="high_school_statistics"),
CustomMMLUEvaluationTask(name="mmlu:high_school_us_history", hf_subset="high_school_us_history"),
CustomMMLUEvaluationTask(name="mmlu:high_school_world_history", hf_subset="high_school_world_history"),
CustomMMLUEvaluationTask(name="mmlu:human_aging", hf_subset="human_aging"),
CustomMMLUEvaluationTask(name="mmlu:human_sexuality", hf_subset="human_sexuality"),
CustomMMLUEvaluationTask(name="mmlu:international_law", hf_subset="international_law"),
CustomMMLUEvaluationTask(name="mmlu:jurisprudence", hf_subset="jurisprudence"),
CustomMMLUEvaluationTask(name="mmlu:logical_fallacies", hf_subset="logical_fallacies"),
CustomMMLUEvaluationTask(name="mmlu:machine_learning", hf_subset="machine_learning"),
CustomMMLUEvaluationTask(name="mmlu:management", hf_subset="management"),
CustomMMLUEvaluationTask(name="mmlu:marketing", hf_subset="marketing"),
CustomMMLUEvaluationTask(name="mmlu:medical_genetics", hf_subset="medical_genetics"),
CustomMMLUEvaluationTask(name="mmlu:miscellaneous", hf_subset="miscellaneous"),
CustomMMLUEvaluationTask(name="mmlu:moral_disputes", hf_subset="moral_disputes"),
CustomMMLUEvaluationTask(name="mmlu:moral_scenarios", hf_subset="moral_scenarios"),
CustomMMLUEvaluationTask(name="mmlu:nutrition", hf_subset="nutrition"),
CustomMMLUEvaluationTask(name="mmlu:philosophy", hf_subset="philosophy"),
CustomMMLUEvaluationTask(name="mmlu:prehistory", hf_subset="prehistory"),
CustomMMLUEvaluationTask(name="mmlu:professional_accounting", hf_subset="professional_accounting"),
CustomMMLUEvaluationTask(name="mmlu:professional_law", hf_subset="professional_law"),
CustomMMLUEvaluationTask(name="mmlu:professional_medicine", hf_subset="professional_medicine"),
CustomMMLUEvaluationTask(name="mmlu:professional_psychology", hf_subset="professional_psychology"),
CustomMMLUEvaluationTask(name="mmlu:public_relations", hf_subset="public_relations"),
CustomMMLUEvaluationTask(name="mmlu:security_studies", hf_subset="security_studies"),
CustomMMLUEvaluationTask(name="mmlu:sociology", hf_subset="sociology"),
CustomMMLUEvaluationTask(name="mmlu:us_foreign_policy", hf_subset="us_foreign_policy"),
CustomMMLUEvaluationTask(name="mmlu:virology", hf_subset="virology"),
CustomMMLUEvaluationTask(name="mmlu:world_religions", hf_subset="world_religions"),
]
def mmlu_prompt(line, task_name: str = None):
"""MMLU prompt without letters"""
topic = line["subject"]
prompt = f"The following are questions about {topic.replace('_', ' ')}.\nQuestion: "
prompt += line["question"] + "\nAnswer:"
return Doc(
task_name=task_name,
query=prompt,
choices=[f" {c}" for c in line["choices"]],
gold_index=line["answer"],
instruction=f"The following are questions about {topic.replace('_', ' ')}.\n",
)
MMLU_STRING = [(t, f"custom|{t.name}|0|1") for t in MMLU_TASKS]
_TASKS_STRINGS.extend(MMLU_STRING)
_TASKS += MMLU_TASKS
# common sense reasoning + mmlu
EARLY_SIGNAL_TASKS = ",".join([t[1] for t in COMMON_SENSE_REASONING_STRING] + [t[1] for t in MMLU_STRING])
# Convert to dict for lighteval
TASKS_TABLE = [task.as_dict() for task in _TASKS]
# You can have a few pre-organised groups of tasks
TASKS_GROUPS = {
"early-signal": EARLY_SIGNAL_TASKS,
}
|