Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
ArXiv:
DOI:
Libraries:
Datasets
Dask
License:
File size: 14,735 Bytes
3d799f3
 
 
 
 
 
 
 
e4f5f2b
 
 
 
 
 
 
 
 
 
 
 
3d799f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af075be
3d799f3
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# ruff: noqa: F405, F403, F401
"""
Custom evaluation tasks for lighteval

Do note that we ran the evals with `max_samples=1000` to speed up large evals.
Most custom prompt changes were in an attempt to improve signal for small models in general.

This file generally creates just a TASKS_TABLE and TASKS_GROUPS which are then imported by LightEval.

Example usage (lighteval_tasks.py is the path to this file):
===================
accelerate launch --num_processes=1 lighteval/run_evals_accelerate.py --model_args="pretrained=HuggingFaceFW/ablation-model-fineweb-edu" \
    --custom_tasks "lighteval_tasks.py" --output_dir [OUTPUTPATH] --max_samples 1000 \ 
    --tasks "custom|hellaswag|0|1,custom|winogrande|0|1,custom|piqa|0|1,custom|siqa|0|1,custom|openbookqa|0|1,custom|arc:easy|0|1,custom|arc:challenge|0|1,custom|commonsense_qa|0|1,custom|mmlu:abstract_algebra|0|1,custom|mmlu:anatomy|0|1,custom|mmlu:astronomy|0|1,custom|mmlu:business_ethics|0|1,custom|mmlu:clinical_knowledge|0|1,custom|mmlu:college_biology|0|1,custom|mmlu:college_chemistry|0|1,custom|mmlu:college_computer_science|0|1,custom|mmlu:college_mathematics|0|1,custom|mmlu:college_medicine|0|1,custom|mmlu:college_physics|0|1,custom|mmlu:computer_security|0|1,custom|mmlu:conceptual_physics|0|1,custom|mmlu:econometrics|0|1,custom|mmlu:electrical_engineering|0|1,custom|mmlu:elementary_mathematics|0|1,custom|mmlu:formal_logic|0|1,custom|mmlu:global_facts|0|1,custom|mmlu:high_school_biology|0|1,custom|mmlu:high_school_chemistry|0|1,custom|mmlu:high_school_computer_science|0|1,custom|mmlu:high_school_european_history|0|1,custom|mmlu:high_school_geography|0|1,custom|mmlu:high_school_government_and_politics|0|1,custom|mmlu:high_school_macroeconomics|0|1,custom|mmlu:high_school_mathematics|0|1,custom|mmlu:high_school_microeconomics|0|1,custom|mmlu:high_school_physics|0|1,custom|mmlu:high_school_psychology|0|1,custom|mmlu:high_school_statistics|0|1,custom|mmlu:high_school_us_history|0|1,custom|mmlu:high_school_world_history|0|1,custom|mmlu:human_aging|0|1,custom|mmlu:human_sexuality|0|1,custom|mmlu:international_law|0|1,custom|mmlu:jurisprudence|0|1,custom|mmlu:logical_fallacies|0|1,custom|mmlu:machine_learning|0|1,custom|mmlu:management|0|1,custom|mmlu:marketing|0|1,custom|mmlu:medical_genetics|0|1,custom|mmlu:miscellaneous|0|1,custom|mmlu:moral_disputes|0|1,custom|mmlu:moral_scenarios|0|1,custom|mmlu:nutrition|0|1,custom|mmlu:philosophy|0|1,custom|mmlu:prehistory|0|1,custom|mmlu:professional_accounting|0|1,custom|mmlu:professional_law|0|1,custom|mmlu:professional_medicine|0|1,custom|mmlu:professional_psychology|0|1,custom|mmlu:public_relations|0|1,custom|mmlu:security_studies|0|1,custom|mmlu:sociology|0|1,custom|mmlu:us_foreign_policy|0|1,custom|mmlu:virology|0|1,custom|mmlu:world_religions|0|1"
===================

More info here: https://github.com/huggingface/lighteval?tab=readme-ov-file#evaluate-a-model-on-extended-community-or-custom-tasks
For more info on differences between MMLU implementations: https://huggingface.co/blog/open-llm-leaderboard-mmlu#1001-flavors-of-mmlu
In particular, the default leaderboard MMLU implementation (which uses "A", "B", etc as answer targets) gives generally random results on small/non instruction tuned models.
Instead, we use the full MMLU answer as the target.
"""
import re
from typing import List, Tuple

from lighteval.metrics import Metrics
from lighteval.tasks.lighteval_task import LightevalTaskConfig
from lighteval.tasks.requests import Doc
from lighteval.tasks.tasks_prompt_formatting import LETTER_INDICES

_TASKS_STRINGS: List[Tuple[LightevalTaskConfig, str]] = []
_TASKS: List[LightevalTaskConfig] = []

## COMMON_SENSE_REASONING_TASKS ##
COMMON_SENSE_REASONING_TASKS = [
    LightevalTaskConfig(
        name="hellaswag",
        prompt_function="hellaswag_prompt",
        hf_repo="hellaswag",
        hf_subset="default",
        metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
    ),
    LightevalTaskConfig(
        name="winogrande",
        prompt_function="winogrande",
        hf_repo="winogrande",
        hf_subset="winogrande_xl",
        metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
    ),
    LightevalTaskConfig(
        name="piqa",
        prompt_function="piqa_harness",
        hf_repo="piqa",
        hf_subset="plain_text",
        metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
    ),
    LightevalTaskConfig(
        name="siqa",
        prompt_function="siqa_prompt",
        hf_repo="lighteval/siqa",
        hf_subset="default",
        hf_avail_splits=["train", "validation"],
        metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
    ),
    LightevalTaskConfig(
        name="openbookqa",
        prompt_function="openbookqa",
        hf_repo="openbookqa",
        hf_subset="main",
        metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
    ),
    LightevalTaskConfig(
        name="arc:easy",
        prompt_function="arc",
        hf_repo="ai2_arc",
        hf_subset="ARC-Easy",
        evaluation_splits=["test"],
        generation_size=1,
        metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
    ),
    LightevalTaskConfig(
        name="arc:challenge",
        prompt_function="arc",
        hf_repo="ai2_arc",
        hf_subset="ARC-Challenge",
        evaluation_splits=["test"],
        generation_size=1,
        metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
    ),
    LightevalTaskConfig(
        name="commonsense_qa",
        prompt_function="commonsense_qa_prompt",
        hf_repo="commonsense_qa",
        hf_subset="default",
        metric=["loglikelihood_acc", "loglikelihood_acc_norm_nospace"],
    ),
]


def commonsense_qa_prompt(line, task_name: str = None):
    return Doc(
        task_name=task_name,
        query=line["question"],
        choices=[f" {c}" for c in line["choices"]["text"]],
        gold_index=LETTER_INDICES.index(line["answerKey"].strip()),
        instruction="",
    )


def siqa_prompt(line, task_name: str = None):
    return Doc(
        task_name=task_name,
        query=line["context"] + " " + line["question"],
        choices=[f" {c}" for c in [line["answerA"], line["answerB"], line["answerC"]]],
        gold_index=int(line["label"]) - 1,
        instruction="",
    )


def hellaswag_prompt(line, task_name: str = None):
    def preprocess(text):
        """Comes from AiHarness"""
        # text = text.strip()
        # NOTE: Brackets are artifacts of the WikiHow dataset portion of HellaSwag.
        text = text.replace(" [title]", ". ")
        text = re.sub("\\[.*?\\]", "", text)
        text = text.replace("  ", " ")
        return text

    ctx = f"{line['ctx_a']} {line['ctx_b'].capitalize()} "
    return Doc(
        task_name=task_name,
        query=preprocess(line["activity_label"] + ": " + ctx),
        choices=[" " + preprocess(ending) for ending in line["endings"]],
        gold_index=int(line["label"]) if line["label"] != "" else -1,  # -1 for test
        # "metric": "choices_loglikelihood",
    )


# 0 short for common sense
COMMON_SENSE_REASONING_STRING = [(t, f"custom|{t.name}|0|1") for t in COMMON_SENSE_REASONING_TASKS]
_TASKS_STRINGS.extend(COMMON_SENSE_REASONING_STRING)
_TASKS += COMMON_SENSE_REASONING_TASKS

## MMLU ##
class CustomMMLUEvaluationTask(LightevalTaskConfig):
    def __init__(
        self,
        name,
        prompt_function="mmlu_prompt",
        hf_repo="lighteval/mmlu",
        hf_subset=None,
        #  metric=[Metrics.loglikelihood_acc_single_token],
        metric=[Metrics.loglikelihood_acc, Metrics.loglikelihood_acc_norm_nospace],
        hf_avail_splits=None,
        evaluation_splits=["test"],
        few_shots_split="dev",
        few_shots_select=None,
        suite=None,
        generation_size=-1,
        stop_sequence=None,
        output_regex=None,
        frozen=False,
    ):
        super().__init__(
            name=name,
            prompt_function=prompt_function,
            hf_repo=hf_repo,
            hf_subset=hf_subset,
            metric=metric,
            hf_avail_splits=hf_avail_splits,
            evaluation_splits=evaluation_splits,
            few_shots_split=few_shots_split,
            few_shots_select=few_shots_select,
            suite=suite,
            generation_size=generation_size,
            stop_sequence=stop_sequence,
            output_regex=output_regex,
            frozen=frozen,
        )


MMLU_TASKS = [
    CustomMMLUEvaluationTask(name="mmlu:abstract_algebra", hf_subset="abstract_algebra"),
    CustomMMLUEvaluationTask(name="mmlu:anatomy", hf_subset="anatomy"),
    CustomMMLUEvaluationTask(name="mmlu:astronomy", hf_subset="astronomy"),
    CustomMMLUEvaluationTask(name="mmlu:business_ethics", hf_subset="business_ethics"),
    CustomMMLUEvaluationTask(name="mmlu:clinical_knowledge", hf_subset="clinical_knowledge"),
    CustomMMLUEvaluationTask(name="mmlu:college_biology", hf_subset="college_biology"),
    CustomMMLUEvaluationTask(name="mmlu:college_chemistry", hf_subset="college_chemistry"),
    CustomMMLUEvaluationTask(name="mmlu:college_computer_science", hf_subset="college_computer_science"),
    CustomMMLUEvaluationTask(name="mmlu:college_mathematics", hf_subset="college_mathematics"),
    CustomMMLUEvaluationTask(name="mmlu:college_medicine", hf_subset="college_medicine"),
    CustomMMLUEvaluationTask(name="mmlu:college_physics", hf_subset="college_physics"),
    CustomMMLUEvaluationTask(name="mmlu:computer_security", hf_subset="computer_security"),
    CustomMMLUEvaluationTask(name="mmlu:conceptual_physics", hf_subset="conceptual_physics"),
    CustomMMLUEvaluationTask(name="mmlu:econometrics", hf_subset="econometrics"),
    CustomMMLUEvaluationTask(name="mmlu:electrical_engineering", hf_subset="electrical_engineering"),
    CustomMMLUEvaluationTask(name="mmlu:elementary_mathematics", hf_subset="elementary_mathematics"),
    CustomMMLUEvaluationTask(name="mmlu:formal_logic", hf_subset="formal_logic"),
    CustomMMLUEvaluationTask(name="mmlu:global_facts", hf_subset="global_facts"),
    CustomMMLUEvaluationTask(name="mmlu:high_school_biology", hf_subset="high_school_biology"),
    CustomMMLUEvaluationTask(name="mmlu:high_school_chemistry", hf_subset="high_school_chemistry"),
    CustomMMLUEvaluationTask(name="mmlu:high_school_computer_science", hf_subset="high_school_computer_science"),
    CustomMMLUEvaluationTask(name="mmlu:high_school_european_history", hf_subset="high_school_european_history"),
    CustomMMLUEvaluationTask(name="mmlu:high_school_geography", hf_subset="high_school_geography"),
    CustomMMLUEvaluationTask(
        name="mmlu:high_school_government_and_politics", hf_subset="high_school_government_and_politics"
    ),
    CustomMMLUEvaluationTask(name="mmlu:high_school_macroeconomics", hf_subset="high_school_macroeconomics"),
    CustomMMLUEvaluationTask(name="mmlu:high_school_mathematics", hf_subset="high_school_mathematics"),
    CustomMMLUEvaluationTask(name="mmlu:high_school_microeconomics", hf_subset="high_school_microeconomics"),
    CustomMMLUEvaluationTask(name="mmlu:high_school_physics", hf_subset="high_school_physics"),
    CustomMMLUEvaluationTask(name="mmlu:high_school_psychology", hf_subset="high_school_psychology"),
    CustomMMLUEvaluationTask(name="mmlu:high_school_statistics", hf_subset="high_school_statistics"),
    CustomMMLUEvaluationTask(name="mmlu:high_school_us_history", hf_subset="high_school_us_history"),
    CustomMMLUEvaluationTask(name="mmlu:high_school_world_history", hf_subset="high_school_world_history"),
    CustomMMLUEvaluationTask(name="mmlu:human_aging", hf_subset="human_aging"),
    CustomMMLUEvaluationTask(name="mmlu:human_sexuality", hf_subset="human_sexuality"),
    CustomMMLUEvaluationTask(name="mmlu:international_law", hf_subset="international_law"),
    CustomMMLUEvaluationTask(name="mmlu:jurisprudence", hf_subset="jurisprudence"),
    CustomMMLUEvaluationTask(name="mmlu:logical_fallacies", hf_subset="logical_fallacies"),
    CustomMMLUEvaluationTask(name="mmlu:machine_learning", hf_subset="machine_learning"),
    CustomMMLUEvaluationTask(name="mmlu:management", hf_subset="management"),
    CustomMMLUEvaluationTask(name="mmlu:marketing", hf_subset="marketing"),
    CustomMMLUEvaluationTask(name="mmlu:medical_genetics", hf_subset="medical_genetics"),
    CustomMMLUEvaluationTask(name="mmlu:miscellaneous", hf_subset="miscellaneous"),
    CustomMMLUEvaluationTask(name="mmlu:moral_disputes", hf_subset="moral_disputes"),
    CustomMMLUEvaluationTask(name="mmlu:moral_scenarios", hf_subset="moral_scenarios"),
    CustomMMLUEvaluationTask(name="mmlu:nutrition", hf_subset="nutrition"),
    CustomMMLUEvaluationTask(name="mmlu:philosophy", hf_subset="philosophy"),
    CustomMMLUEvaluationTask(name="mmlu:prehistory", hf_subset="prehistory"),
    CustomMMLUEvaluationTask(name="mmlu:professional_accounting", hf_subset="professional_accounting"),
    CustomMMLUEvaluationTask(name="mmlu:professional_law", hf_subset="professional_law"),
    CustomMMLUEvaluationTask(name="mmlu:professional_medicine", hf_subset="professional_medicine"),
    CustomMMLUEvaluationTask(name="mmlu:professional_psychology", hf_subset="professional_psychology"),
    CustomMMLUEvaluationTask(name="mmlu:public_relations", hf_subset="public_relations"),
    CustomMMLUEvaluationTask(name="mmlu:security_studies", hf_subset="security_studies"),
    CustomMMLUEvaluationTask(name="mmlu:sociology", hf_subset="sociology"),
    CustomMMLUEvaluationTask(name="mmlu:us_foreign_policy", hf_subset="us_foreign_policy"),
    CustomMMLUEvaluationTask(name="mmlu:virology", hf_subset="virology"),
    CustomMMLUEvaluationTask(name="mmlu:world_religions", hf_subset="world_religions"),
]


def mmlu_prompt(line, task_name: str = None):
    """MMLU prompt without letters"""
    topic = line["subject"]
    prompt = f"The following are questions about {topic.replace('_', ' ')}.\nQuestion: "
    prompt += line["question"] + "\nAnswer:"

    return Doc(
        task_name=task_name,
        query=prompt,
        choices=[f" {c}" for c in line["choices"]],
        gold_index=line["answer"],
        instruction=f"The following are questions about {topic.replace('_', ' ')}.\n",
    )


MMLU_STRING = [(t, f"custom|{t.name}|0|1") for t in MMLU_TASKS]
_TASKS_STRINGS.extend(MMLU_STRING)
_TASKS += MMLU_TASKS

# common sense reasoning + mmlu
EARLY_SIGNAL_TASKS = ",".join([t[1] for t in COMMON_SENSE_REASONING_STRING] + [t[1] for t in MMLU_STRING])

# Convert to dict for lighteval
TASKS_TABLE = [task.as_dict() for task in _TASKS]
# You can have a few pre-organised groups of tasks
TASKS_GROUPS = {
    "early-signal": EARLY_SIGNAL_TASKS,
}