Commit
·
94c1e74
1
Parent(s):
ba9716e
loading script v0
Browse files
NoCaps.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Datasets Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""NoCaps loading script."""
|
15 |
+
|
16 |
+
|
17 |
+
import json
|
18 |
+
|
19 |
+
from collections import defaultdict
|
20 |
+
import datasets
|
21 |
+
|
22 |
+
_CITATION = """\
|
23 |
+
@inproceedings{agrawal2019nocaps,
|
24 |
+
title={nocaps: novel object captioning at scale},
|
25 |
+
author={Agrawal, Harsh and Desai, Karan and Wang, Yufei and Chen, Xinlei and Jain, Rishabh and Johnson, Mark and Batra, Dhruv and Parikh, Devi and Lee, Stefan and Anderson, Peter},
|
26 |
+
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
|
27 |
+
pages={8948--8957},
|
28 |
+
year={2019}
|
29 |
+
}
|
30 |
+
"""
|
31 |
+
|
32 |
+
_DESCRIPTION = """\
|
33 |
+
Dubbed NoCaps, for novel object captioning at scale, NoCaps consists of 166,100 human-generated captions describing 15,100 images from the Open Images validation and test sets.
|
34 |
+
The associated training data consists of COCO image-caption pairs, plus Open Images image-level labels and object bounding boxes.
|
35 |
+
Since Open Images contains many more classes than COCO, nearly 400 object classes seen in test images have no or very few associated training captions (hence, nocaps).
|
36 |
+
"""
|
37 |
+
|
38 |
+
_HOMEPAGE = "https://nocaps.org/"
|
39 |
+
|
40 |
+
_LICENSE = "CC BY 2.0"
|
41 |
+
|
42 |
+
_URLS = {
|
43 |
+
"validation": "https://nocaps.s3.amazonaws.com/nocaps_val_4500_captions.json",
|
44 |
+
"test": "https://s3.amazonaws.com/nocaps/nocaps_test_image_info.json",
|
45 |
+
}
|
46 |
+
|
47 |
+
|
48 |
+
class NoCaps(datasets.GeneratorBasedBuilder):
|
49 |
+
|
50 |
+
VERSION = datasets.Version("1.0.0")
|
51 |
+
|
52 |
+
def _info(self):
|
53 |
+
features = datasets.Features(
|
54 |
+
{
|
55 |
+
"image": datasets.Image(),
|
56 |
+
"image_coco_url": datasets.Value("string"),
|
57 |
+
"image_date_captured": datasets.Value("string"),
|
58 |
+
"image_file_name": datasets.Value("string"),
|
59 |
+
"image_height": datasets.Value("int32"),
|
60 |
+
"image_width": datasets.Value("int32"),
|
61 |
+
"image_id": datasets.Value("int32"),
|
62 |
+
"image_license": datasets.Value("int8"),
|
63 |
+
"image_open_images_id": datasets.Value("string"),
|
64 |
+
"annotations_ids": datasets.Sequence(datasets.Value("int32")),
|
65 |
+
"annotations_captions": datasets.Sequence(datasets.Value("string")),
|
66 |
+
}
|
67 |
+
)
|
68 |
+
return datasets.DatasetInfo(
|
69 |
+
description=_DESCRIPTION,
|
70 |
+
features=features,
|
71 |
+
homepage=_HOMEPAGE,
|
72 |
+
license=_LICENSE,
|
73 |
+
citation=_CITATION,
|
74 |
+
)
|
75 |
+
|
76 |
+
def _split_generators(self, dl_manager):
|
77 |
+
data_file = dl_manager.download_and_extract(_URLS)
|
78 |
+
return [
|
79 |
+
datasets.SplitGenerator(
|
80 |
+
name=datasets.Split.VALIDATION,
|
81 |
+
gen_kwargs={
|
82 |
+
"data_file": data_file["validation"],
|
83 |
+
},
|
84 |
+
),
|
85 |
+
datasets.SplitGenerator(
|
86 |
+
name=datasets.Split.TEST,
|
87 |
+
gen_kwargs={
|
88 |
+
"data_file": data_file["test"],
|
89 |
+
},
|
90 |
+
),
|
91 |
+
]
|
92 |
+
|
93 |
+
def _generate_examples(self, data_file):
|
94 |
+
with open(data_file, encoding="utf-8") as f:
|
95 |
+
data = json.load(f)
|
96 |
+
|
97 |
+
annotations = defaultdict(list)
|
98 |
+
if "annotations" in data:
|
99 |
+
# Only present for the validation split
|
100 |
+
for ann in data["annotations"]:
|
101 |
+
image_id = ann["image_id"]
|
102 |
+
caption_id = ann["id"]
|
103 |
+
caption = ann["caption"]
|
104 |
+
annotations[image_id].append((caption_id, caption))
|
105 |
+
|
106 |
+
counter = 0
|
107 |
+
for im in data["images"]:
|
108 |
+
image_coco_url = im["coco_url"]
|
109 |
+
image_date_captured = im["date_captured"]
|
110 |
+
image_file_name = im["file_name"]
|
111 |
+
image_height = im["height"]
|
112 |
+
image_width = im["width"]
|
113 |
+
image_id = im["id"]
|
114 |
+
image_license = im["license"]
|
115 |
+
image_open_images_id = im["open_images_id"]
|
116 |
+
yield counter, {
|
117 |
+
"image": image_coco_url,
|
118 |
+
"image_coco_url": image_coco_url,
|
119 |
+
"image_date_captured": image_date_captured,
|
120 |
+
"image_file_name": image_file_name,
|
121 |
+
"image_height": image_height,
|
122 |
+
"image_width": image_width,
|
123 |
+
"image_id": image_id,
|
124 |
+
"image_license": image_license,
|
125 |
+
"image_open_images_id": image_open_images_id,
|
126 |
+
"annotations_ids": [ann[0] for ann in annotations[image_id]],
|
127 |
+
"annotations_captions": [ann[1] for ann in annotations[image_id]],
|
128 |
+
}
|
129 |
+
counter += 1
|