File size: 1,289 Bytes
7c8b13d 464d103 970ae16 464d103 5265db8 c6e42da 5265db8 b9a04b7 5265db8 b9a04b7 5265db8 b9a04b7 5265db8 b9a04b7 5265db8 b9a04b7 5265db8 b9a04b7 5265db8 b9a04b7 5265db8 b9a04b7 5829f51 b9a04b7 5265db8 b9a04b7 5265db8 b9a04b7 5265db8 321ed6b 5265db8 b9a04b7 5265db8 b9a04b7 5265db8 b9a04b7 5265db8 b9a04b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
license: apache-2.0
language:
- zh
pretty_name: Ziya-Eval-Chinese
size_categories:
- n<1K
---
# 姜子牙中文评估数据集 Ziya-Eval-Chinese
### 数据介绍 Dataset Summary
用于评估大语言模型的中文能力
This IDEA-CCNL/Ziya-Eval-Chinese dataset is designed to evaluate the ability of LLM in chinese.
### 语言 Languages
中文
Chinese
### 数据示例 Data Instances
```json
{"class":"问答", "type":"猜谜", "query":"双喜临门,打一中国地名"}
```
### 数据字段 Data Fields
- class: str
- type: str
- query: str
### 数据分段 Data Splits
包含train、test、val,三者一样
train、test、val, they are the same split.
### 引用 Citation
```
@article{fengshenbang,
author = {Jiaxing Zhang and Ruyi Gan and Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen},
title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence},
journal = {CoRR},
volume = {abs/2209.02970},
year = {2022}
}
```
|