File size: 2,832 Bytes
69e79ef
 
 
 
 
 
 
 
 
cf20c91
 
 
69e79ef
4538a48
69e79ef
64eb788
69e79ef
4538a48
 
cf20c91
69e79ef
 
 
 
 
 
2e1fb0d
52d0c82
 
69e79ef
 
0114f67
 
69e79ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ad30db
69e79ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ee5036
69e79ef
 
 
 
 
 
 
 
f7473a0
 
 
 
 
 
 
 
 
 
69e79ef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
license: apache-2.0
language:
- el
pipeline_tag: text-classification
task_categories:
- text-classification
- text-generation
- zero-shot-classification
task_ids:
- multi-class-classification
- topic-classification
tags:
- Social Media
- Reddit
- Greek NLP
- Text Classification
- Topic Classification
- Title Generation
pretty_name: Greek Reddit
size_categories:
- 1K<n<10K
---

# GreekReddit

A Greek topic classification dataset collected from Greek subreddits, which contains 6,534 posts, their titles and topic labels.
This dataset has been used to train our best-performing model [Greek-Reddit-BERT](https://huggingface.co/IMISLab/Greek-Reddit-BERT) as part of our research article: 
[Mastrokostas, C., Giarelis, N., & Karacapilidis, N. (2024). Social Media Topic Classification on Greek Reddit](https://www.mdpi.com/2078-2489/15/9/521) 
For information about dataset creation, limitations etc. see the original article.

<img src="Greek Reddit icon.svg" width="200"/>

### Supported Tasks and Leaderboards

This dataset supports:

**Multi-class Text Classification:** Given the text of a post, a model learns to predict the associated topic label.  
**Title Generation:** Given the text of a post, a text generation model learns to generate a post title.

### Languages

All posts are written in Greek.

## Dataset Structure

### Data Instances

The dataset is structured as a `.csv` file, while three dataset splits are provided (train, validation and test).

### Data Fields

The following data fields are provided for each split:

`id`: (**str**)  A unique post id.  
`title`: (**str**) A short post title.  
`text`: (**str**) The full text of the post.  
`url`: (**str**) The URL which links to the original unprocessed post.  
`category`: (**str**): The class label of the post.  

### Data Splits

|Split|No of Documents| 
|-------------------|------------------------------------|
|Train|5,530|
|Validation|504|
|Test|500|

### Example code
```python
from datasets import load_dataset

# Load the training, validation and test dataset splits.
train_split = load_dataset('IMISLab/GreekReddit', split = 'train')
validation_split = load_dataset('IMISLab/GreekReddit', split = 'validation')
test_split = load_dataset('IMISLab/GreekReddit', split = 'test')

print(test_split[0])
```
## Contact

If you have any questions/feedback about the dataset please e-mail one of the following authors:
```
giarelis@ceid.upatras.gr
cmastrokostas@ac.upatras.gr
karacap@upatras.gr
```
## Citation

```
@article{mastrokostas2024social,
  title={Social Media Topic Classification on Greek Reddit},
  author={Mastrokostas, Charalampos and Giarelis, Nikolaos and Karacapilidis, Nikos},
  journal={Information},
  volume={15},
  number={9},
  pages={521},
  year={2024},
  publisher={Multidisciplinary Digital Publishing Institute}
}
```