File size: 2,832 Bytes
69e79ef cf20c91 69e79ef 4538a48 69e79ef 64eb788 69e79ef 4538a48 cf20c91 69e79ef 2e1fb0d 52d0c82 69e79ef 0114f67 69e79ef 1ad30db 69e79ef 0ee5036 69e79ef f7473a0 69e79ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
---
license: apache-2.0
language:
- el
pipeline_tag: text-classification
task_categories:
- text-classification
- text-generation
- zero-shot-classification
task_ids:
- multi-class-classification
- topic-classification
tags:
- Social Media
- Reddit
- Greek NLP
- Text Classification
- Topic Classification
- Title Generation
pretty_name: Greek Reddit
size_categories:
- 1K<n<10K
---
# GreekReddit
A Greek topic classification dataset collected from Greek subreddits, which contains 6,534 posts, their titles and topic labels.
This dataset has been used to train our best-performing model [Greek-Reddit-BERT](https://huggingface.co/IMISLab/Greek-Reddit-BERT) as part of our research article:
[Mastrokostas, C., Giarelis, N., & Karacapilidis, N. (2024). Social Media Topic Classification on Greek Reddit](https://www.mdpi.com/2078-2489/15/9/521)
For information about dataset creation, limitations etc. see the original article.
<img src="Greek Reddit icon.svg" width="200"/>
### Supported Tasks and Leaderboards
This dataset supports:
**Multi-class Text Classification:** Given the text of a post, a model learns to predict the associated topic label.
**Title Generation:** Given the text of a post, a text generation model learns to generate a post title.
### Languages
All posts are written in Greek.
## Dataset Structure
### Data Instances
The dataset is structured as a `.csv` file, while three dataset splits are provided (train, validation and test).
### Data Fields
The following data fields are provided for each split:
`id`: (**str**) A unique post id.
`title`: (**str**) A short post title.
`text`: (**str**) The full text of the post.
`url`: (**str**) The URL which links to the original unprocessed post.
`category`: (**str**): The class label of the post.
### Data Splits
|Split|No of Documents|
|-------------------|------------------------------------|
|Train|5,530|
|Validation|504|
|Test|500|
### Example code
```python
from datasets import load_dataset
# Load the training, validation and test dataset splits.
train_split = load_dataset('IMISLab/GreekReddit', split = 'train')
validation_split = load_dataset('IMISLab/GreekReddit', split = 'validation')
test_split = load_dataset('IMISLab/GreekReddit', split = 'test')
print(test_split[0])
```
## Contact
If you have any questions/feedback about the dataset please e-mail one of the following authors:
```
giarelis@ceid.upatras.gr
cmastrokostas@ac.upatras.gr
karacap@upatras.gr
```
## Citation
```
@article{mastrokostas2024social,
title={Social Media Topic Classification on Greek Reddit},
author={Mastrokostas, Charalampos and Giarelis, Nikolaos and Karacapilidis, Nikos},
journal={Information},
volume={15},
number={9},
pages={521},
year={2024},
publisher={Multidisciplinary Digital Publishing Institute}
}
``` |