Datasets:
Tasks:
Text Generation
Size:
10K - 100K
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Datasets Authors and Ilya Gusev | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""Habrahabr dataset""" | |
import os | |
import io | |
import zstandard | |
import jsonlines | |
import datasets | |
try: | |
import simdjson | |
parser = simdjson.Parser() | |
def parse_json(x): | |
try: | |
return parser.parse(x).as_dict() | |
except ValueError: | |
return | |
except ImportError: | |
import json | |
def parse_json(x): | |
return json.loads(x) | |
_DESCRIPTION = "Habrahabr dataset" | |
_URL = "habr.jsonl.zst" | |
class RuLMDataset(datasets.GeneratorBasedBuilder): | |
"""Habrahabr dataset""" | |
VERSION = datasets.Version("0.0.1") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="default", version=VERSION, description=""), | |
] | |
DEFAULT_CONFIG_NAME = "default" | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"text": datasets.Value("string"), | |
"meta": { | |
"id": datasets.Value("uint32"), | |
"time_published": datasets.Value("uint64"), | |
"title": datasets.Value("string"), | |
"author": datasets.Value("string"), | |
"statistics": { | |
"commentsCount": datasets.Value("uint32"), | |
"favoritesCount": datasets.Value("uint32"), | |
"readingCount": datasets.Value("uint32"), | |
"score": datasets.Value("int32"), | |
"votesCount": datasets.Value("int32"), | |
"votesCountPlus": datasets.Value("int32"), | |
"votesCountMinus": datasets.Value("int32") | |
} | |
} | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features | |
) | |
def _split_generators(self, dl_manager): | |
downloaded_file = dl_manager.download(_URL) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"path": downloaded_file}), | |
] | |
def _generate_examples(self, path): | |
with open(path, "rb") as f: | |
cctx = zstandard.ZstdDecompressor() | |
reader_stream = io.BufferedReader(cctx.stream_reader(f)) | |
reader = jsonlines.Reader(reader_stream, loads=parse_json) | |
for id_, item in enumerate(reader): | |
yield id_, {"text": item["text"], "meta": item["meta"]} | |