# coding=utf-8 # Copyright 2023 The HuggingFace Datasets Authors and Ilya Gusev # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import os import io import zstandard import jsonlines import datasets try: import simdjson parser = simdjson.Parser() def parse_json(x): try: return parser.parse(x).as_dict() except ValueError: return except ImportError: import json def parse_json(x): return json.loads(x) _DESCRIPTION = "Pikabu dataset" _URL = "pikabu.jsonl.zst" class YandexQFullDataset(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("0.0.1") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="default", version=VERSION, description=""), ] DEFAULT_CONFIG_NAME = "default" def _info(self): features = datasets.Features( { "id": datasets.Value("int64"), "title": datasets.Value("string"), "text_markdown": datasets.Value("string"), "timestamp": datasets.Value("uint64"), "author_id": datasets.Value("int64"), "username": datasets.Value("string"), "rating": datasets.Value("int64"), "pluses": datasets.Value("int64"), "minuses": datasets.Value("int64"), "url": datasets.Value("string"), "tags": datasets.Sequence(datasets.Value("string")), "blocks": datasets.Sequence(feature={ "data": datasets.Value("string"), "type": datasets.Value("string") }), "comments": datasets.Sequence(feature={ "id": datasets.Value("int64"), "timestamp": datasets.Value("uint64"), "parent_id": datasets.Value("int64"), "text_markdown": datasets.Value("string"), "text_html": datasets.Value("string"), "images": datasets.Sequence(datasets.Value("string")), "rating": datasets.Value("int64"), "pluses": datasets.Value("int64"), "minuses": datasets.Value("int64"), "author_id": datasets.Value("int64"), "username": datasets.Value("string") }) } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features ) def _split_generators(self, dl_manager): downloaded_file = dl_manager.download(_URL) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"path": downloaded_file}), ] def _generate_examples(self, path): with open(path, "rb") as f: cctx = zstandard.ZstdDecompressor() reader_stream = io.BufferedReader(cctx.stream_reader(f)) reader = jsonlines.Reader(reader_stream, loads=parse_json) for id_, item in enumerate(reader): yield id_, item