File size: 4,622 Bytes
3e7b668 7d838f4 7da8fbe 3bfd79e 7da8fbe b04a69c 3e7b668 7da8fbe eeba4a0 7da8fbe 16c2532 dd71245 7da8fbe 16c2532 7da8fbe 16c2532 7da8fbe 16c2532 7da8fbe 16c2532 7da8fbe c364f2e 7da8fbe aec67be 7da8fbe 16c2532 7da8fbe 8654ee2 25691f4 8654ee2 25691f4 8654ee2 25691f4 7da8fbe 8654ee2 7da8fbe 7079858 683c141 07f3c79 7da8fbe dd71245 7da8fbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
---
license: other
task_categories:
- text-generation
- question-answering
language:
- ru
size_categories:
- 100K<n<1M
dataset_info:
features:
- name: question_id
dtype: uint32
- name: url
dtype: string
- name: answer_count
dtype: uint32
- name: text_html
dtype: string
- name: text_markdown
dtype: string
- name: score
dtype: int32
- name: title
dtype: string
- name: tags
sequence: string
- name: views
dtype: uint64
- name: author
dtype: string
- name: timestamp
dtype: uint64
- name: comments
sequence:
- name: text
dtype: string
- name: author
dtype: string
- name: comment_id
dtype: uint32
- name: score
dtype: int32
- name: timestamp
dtype: uint64
- name: answers
sequence:
- name: answer_id
dtype: uint32
- name: is_accepted
dtype: uint8
- name: text_html
dtype: string
- name: text_markdown
dtype: string
- name: score
dtype: int32
- name: author
dtype: string
- name: timestamp
dtype: uint64
- name: comments
sequence:
- name: text
dtype: string
- name: author
dtype: string
- name: comment_id
dtype: uint32
- name: score
dtype: int32
- name: timestamp
dtype: uint64
splits:
- name: train
num_bytes: 3013377174
num_examples: 437604
download_size: 670468664
dataset_size: 3013377174
---
# Russian StackOverflow dataset
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Description](#description)
- [Usage](#usage)
- [Data Instances](#data-instances)
- [Source Data](#source-data)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Licensing Information](#licensing-information)
## Description
**Summary:** Dataset of questions, answers, and comments from [ru.stackoverflow.com](https://ru.stackoverflow.com/).
**Script:** [create_stackoverflow.py](https://github.com/IlyaGusev/rulm/blob/hf/data_processing/create_stackoverflow.py)
**Point of Contact:** [Ilya Gusev](ilya.gusev@phystech.edu)
**Languages:** The dataset is in Russian with some programming code.
## Usage
Prerequisites:
```bash
pip install datasets zstandard jsonlines pysimdjson
```
Loading:
```python
from datasets import load_dataset
dataset = load_dataset('IlyaGusev/ru_stackoverflow', split="train")
for example in dataset:
print(example["text_markdown"])
print()
```
## Data Instances
```
{
"question_id": 11235,
"answer_count": 1,
"url": "https://ru.stackoverflow.com/questions/11235",
"score": 2,
"tags": ["c++", "сериализация"],
"title": "Извлечение из файла, запись в файл",
"views": 1309,
"author": "...",
"timestamp": 1303205289,
"text_html": "...",
"text_markdown": "...",
"comments": {
"text": ["...", "...",
"author": ["...", "..."],
"comment_id": [11236, 11237],
"score": [0, 0],
"timestamp": [1303205411, 1303205678]
},
"answers": {
"answer_id": [11243, 11245],
"timestamp": [1303207791, 1303207792],
"is_accepted": [1, 0],
"text_html": ["...", "..."],
"text_markdown": ["...", "..."],
"score": [3, 0],
"author": ["...", "..."],
"comments": {
"text": ["...", "..."],
"author": ["...", "..."],
"comment_id": [11246, 11249],
"score": [0, 0],
"timestamp": [1303207961, 1303207800]
}
}
}
```
You can use this little helper to unflatten sequences:
```python
def revert_flattening(records):
fixed_records = []
for key, values in records.items():
if not fixed_records:
fixed_records = [{} for _ in range(len(values))]
for i, value in enumerate(values):
fixed_records[i][key] = value
return fixed_records
```
The original JSONL is already unflattened.
## Source Data
* The data source is the [Russian StackOverflow](https://ru.stackoverflow.com/) website.
* Original XMLs: [ru.stackoverflow.com.7z](https://ia600107.us.archive.org/27/items/stackexchange/ru.stackoverflow.com.7z).
* Processing script is [here](https://github.com/IlyaGusev/rulm/blob/hf/data_processing/create_stackoverflow.py).
## Personal and Sensitive Information
The dataset is not anonymized, so individuals' names can be found in the dataset. Information about the original authors is included in the dataset where possible.
## Licensing Information
According to the license of original data, this dataset is distributed under [CC BY-SA 2.5](https://creativecommons.org/licenses/by-sa/2.5/). |