|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Dataset for explainable fake news detection of public health claims.""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import csv |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{kotonya-toni-2020-explainable, |
|
title = "Explainable Automated Fact-Checking for Public Health Claims", |
|
author = "Kotonya, Neema and Toni, Francesca", |
|
booktitle = "Proceedings of the 2020 Conference on Empirical Methods |
|
in Natural Language Processing (EMNLP)", |
|
month = nov, |
|
year = "2020", |
|
address = "Online", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://www.aclweb.org/anthology/2020.emnlp-main.623", |
|
pages = "7740--7754", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
PUBHEALTH is a comprehensive dataset for explainable automated fact-checking of |
|
public health claims. Each instance in the PUBHEALTH dataset has an associated |
|
veracity label (true, false, unproven, mixture). Furthermore each instance in the |
|
dataset has an explanation text field. The explanation is a justification for which |
|
the claim has been assigned a particular veracity label. |
|
|
|
The dataset was created to explore fact-checking of difficult to verify claims i.e., |
|
those which require expertise from outside of the journalistics domain, in this case |
|
biomedical and public health expertise. |
|
|
|
It was also created in response to the lack of fact-checking datasets which provide |
|
gold standard natural language explanations for verdicts/labels. |
|
|
|
NOTE: There are missing labels in the dataset and we have replaced them with -1. |
|
""" |
|
|
|
_DATA_URL = "https://drive.google.com/uc?export=download&id=1eTtRs5cUlBP5dXsx-FTAlmXuB6JQi2qj" |
|
_TEST_FILE_NAME = "PUBHEALTH/test.tsv" |
|
_TRAIN_FILE_NAME = "PUBHEALTH/train.tsv" |
|
_VAL_FILE_NAME = "PUBHEALTH/dev.tsv" |
|
|
|
|
|
class HealthFact(datasets.GeneratorBasedBuilder): |
|
"""Dataset for explainable fake news detection of public health claims.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=datasets.Features( |
|
{ |
|
"claim_id": datasets.Value("string"), |
|
"claim": datasets.Value("string"), |
|
"date_published": datasets.Value("string"), |
|
"explanation": datasets.Value("string"), |
|
"fact_checkers": datasets.Value("string"), |
|
"main_text": datasets.Value("string"), |
|
"sources": datasets.Value("string"), |
|
"label": datasets.features.ClassLabel(names=["false", "mixture", "true", "unproven"]), |
|
"subjects": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://github.com/neemakot/Health-Fact-Checking/blob/master/data/DATASHEET.md", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.download_and_extract(_DATA_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, _TRAIN_FILE_NAME), |
|
"split": datasets.Split.TRAIN, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, _TEST_FILE_NAME), |
|
"split": datasets.Split.TEST, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, _VAL_FILE_NAME), |
|
"split": datasets.Split.VALIDATION, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
with open(filepath, encoding="utf-8") as f: |
|
label_list = ["false", "mixture", "true", "unproven"] |
|
data = csv.reader(f, delimiter="\t") |
|
next(data, None) |
|
for row_id, row in enumerate(data): |
|
row = [x if x != "nan" else "" for x in row] |
|
if split != "test": |
|
if len(row) <= 9: |
|
elements = ["" for x in range(9 - len(row))] |
|
row = row + elements |
|
( |
|
claim_id, |
|
claim, |
|
date_published, |
|
explanation, |
|
fact_checkers, |
|
main_text, |
|
sources, |
|
label, |
|
subjects, |
|
) = row |
|
if label not in label_list: |
|
label = -1 |
|
else: |
|
if len(row) <= 10: |
|
elements = ["" for x in range(10 - len(row))] |
|
row = row + elements |
|
( |
|
_, |
|
claim_id, |
|
claim, |
|
date_published, |
|
explanation, |
|
fact_checkers, |
|
main_text, |
|
sources, |
|
label, |
|
subjects, |
|
) = row |
|
if label not in label_list: |
|
label = -1 |
|
if label == "": |
|
label = -1 |
|
yield row_id, { |
|
"claim_id": claim_id, |
|
"claim": claim, |
|
"date_published": date_published, |
|
"explanation": explanation, |
|
"fact_checkers": fact_checkers, |
|
"main_text": main_text, |
|
"sources": sources, |
|
"label": label, |
|
"subjects": subjects, |
|
} |
|
|