File size: 1,738 Bytes
478e069
a79d2e0
 
 
79eafc7
a79d2e0
ea9668d
a79d2e0
ea9668d
 
 
 
 
 
 
a79d2e0
 
d903538
 
 
ea9668d
a79d2e0
 
 
8937a2b
ea9668d
a79d2e0
ea9668d
a79d2e0
ea9668d
79eafc7
ea9668d
a79d2e0
ea9668d
 
a79d2e0
79eafc7
 
 
 
ea9668d
 
 
a79d2e0
ea9668d
 
a79d2e0
ea9668d
c789cd8
a79d2e0
ea9668d
a79d2e0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# custom_node_furniture_mask.py by StyleSpace (and GPT4)
import torch
import torchvision.transforms as T
from torchvision.models.segmentation import deeplabv3_resnet50
from PIL import Image

class FurnitureMaskNode:
    def __init__(self):
        self.model = deeplabv3_resnet50(pretrained=True).eval()
        self.transforms = T.Compose([
            T.Resize(256),
            T.CenterCrop(224),
            T.ToTensor(),
            T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        ])

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "input_image": ("IMAGE",),
            },
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "detect_furniture"

    CATEGORY = "custom"

    def detect_furniture(self, input_image):
        input_image = Image.fromarray((input_image * 255).astype('uint8'))
        input_tensor = self.transforms(input_image).unsqueeze(0)
        with torch.no_grad():
            output = self.model(input_tensor)['out'][0]
        output_predictions = output.argmax(0)

        non_furniture_classes = list(range(1, 151))  # Adjust the range based on ADE20K classes
        furniture_classes = [5, 10, 20, 25, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71]  # Based on ADE20K
        non_furniture_classes = [cls for cls in non_furniture_classes if cls not in furniture_classes]

        mask = torch.zeros_like(output_predictions, dtype=torch.bool)
        for cls in non_furniture_classes:
            mask |= (output_predictions == cls)

        mask = ~mask
        masked_image = input_image * mask.unsqueeze(-1).float()

        return masked_image, mask

NODE_CLASS_MAPPINGS = {
    "FurnitureMask": FurnitureMaskNode
}