|
import custom_nodes.Derfuu_Nodes.types as type |
|
import custom_nodes.Derfuu_Nodes.fields as field |
|
from custom_nodes.Derfuu_Nodes.tree import TREE_LATENTS, TREE_IMAGES |
|
|
|
import math |
|
import torch |
|
|
|
import comfy.utils |
|
|
|
|
|
class EmptyLatentImage: |
|
def __init__(self, device="cpu"): |
|
self.device = device |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"TUPLE": (type.TUPLE,), |
|
"batch_size": field.INT, |
|
} |
|
} |
|
|
|
RETURN_TYPES = (type.LATENT,) |
|
FUNCTION = "generate" |
|
CATEGORY = TREE_LATENTS |
|
|
|
def generate(self, TUPLE, batch_size=1): |
|
width = int(TUPLE[0]) |
|
height = int(TUPLE[1]) |
|
|
|
latent = torch.zeros([batch_size, 4, height // 8, width // 8]) |
|
return ({"samples": latent},) |
|
|
|
|
|
class ImageScale_Ratio: |
|
upscale_methods = ["nearest-exact", "bilinear", "area"] |
|
crop_methods = ["disabled", "center"] |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"IMAGE": (type.IMAGE,), |
|
"TUPLE": (type.TUPLE,), |
|
"modifier": field.FLOAT, |
|
"upscale_method": (cls.upscale_methods,), |
|
"crop": (cls.crop_methods,)}} |
|
|
|
RETURN_TYPES = (type.IMAGE, type.TUPLE,) |
|
FUNCTION = "upscale" |
|
|
|
CATEGORY = TREE_IMAGES |
|
|
|
def upscale(self, IMAGE, upscale_method, TUPLE, modifier, crop): |
|
samples = IMAGE.movedim(-1, 1) |
|
|
|
width_B = int(TUPLE[0]) |
|
height_B = int(TUPLE[1]) |
|
|
|
height = math.ceil(height_B * modifier) |
|
width = math.ceil(width_B * modifier) |
|
cls = comfy.utils.common_upscale(samples, width, height, upscale_method, crop) |
|
cls = cls.movedim(1, -1) |
|
return (cls, (width, height),) |
|
|
|
|
|
class ImageScale_Side: |
|
upscale_methods = ["nearest-exact", "bilinear", "area"] |
|
crop_methods = ["disabled", "center"] |
|
|
|
def __init__(self) -> None: |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"IMAGE": (type.IMAGE,), |
|
"TUPLE": (type.TUPLE,), |
|
"side_length": field.INT, |
|
"side": (["Width", "Height"],), |
|
"upscale_method": (cls.upscale_methods,), |
|
"crop": (cls.crop_methods,)}} |
|
|
|
RETURN_TYPES = (type.IMAGE, type.TUPLE,) |
|
FUNCTION = "upscale" |
|
|
|
CATEGORY = TREE_IMAGES |
|
|
|
def upscale(self, IMAGE, upscale_method, TUPLE, side_length, side, crop): |
|
samples = IMAGE.movedim(-1, 1) |
|
|
|
width_B = int(TUPLE[0]) |
|
height_B = int(TUPLE[1]) |
|
|
|
width = width_B |
|
height = height_B |
|
|
|
if side == "Width": |
|
heigh_ratio = height_B / width_B |
|
width = side_length |
|
height = heigh_ratio * width |
|
elif side == "Height": |
|
width_ratio = width_B / height_B |
|
height = side_length |
|
width = width_ratio * height |
|
|
|
width = math.ceil(width) |
|
height = math.ceil(height) |
|
|
|
cls = comfy.utils.common_upscale(samples, width, height, upscale_method, crop) |
|
cls = cls.movedim(1, -1) |
|
return (cls, (width, height), ) |
|
|
|
|
|
class LatentScale_Ratio: |
|
scale_methods = (["nearest-exact", "bilinear", "area"],) |
|
crop_methods = (["disabled", "center"],) |
|
|
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"LATENT": (type.LATENT,), |
|
"TUPLE": (type.TUPLE,), |
|
"modifier": field.FLOAT, |
|
"scale_method": cls.scale_methods, |
|
"crop": cls.crop_methods, |
|
} |
|
} |
|
|
|
RETURN_TYPES = (type.LATENT, type.TUPLE,) |
|
FUNCTION = "scale" |
|
CATEGORY = TREE_LATENTS |
|
|
|
def scale(self, LATENT, scale_method, crop, modifier, TUPLE): |
|
|
|
width = int(TUPLE[0] * modifier) |
|
height = int(TUPLE[1] * modifier) |
|
|
|
cls = LATENT.copy() |
|
cls["samples"] = comfy.utils.common_upscale(LATENT["samples"], width // 8, height // 8, scale_method, crop) |
|
return (cls, (width, height),) |
|
|
|
|
|
class LatentScale_Side: |
|
upscale_methods = ["nearest-exact", "bilinear", "area"] |
|
crop_methods = ["disabled", "center"] |
|
|
|
def __init__(self) -> None: |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"LATENT": (type.LATENT,), |
|
"TUPLE": (type.TUPLE,), |
|
"side_length": field.INT, |
|
"side": (["Width", "Height"],), |
|
"scale_method": (cls.upscale_methods,), |
|
"crop": (cls.crop_methods,)}} |
|
|
|
RETURN_TYPES = (type.LATENT, type.TUPLE,) |
|
FUNCTION = "upscale" |
|
|
|
CATEGORY = TREE_LATENTS |
|
|
|
def upscale(self, LATENT, scale_method, TUPLE, side_length, side, crop): |
|
width_B = int(TUPLE[0]) |
|
height_B = int(TUPLE[1]) |
|
|
|
width = width_B |
|
height = height_B |
|
|
|
if side == "Width": |
|
heigh_ratio = height_B / width_B |
|
width = side_length |
|
height = heigh_ratio * width |
|
elif side == "Height": |
|
width_ratio = width_B / height_B |
|
height = side_length |
|
width = width_ratio * height |
|
|
|
width = math.ceil(width) |
|
height = math.ceil(height) |
|
|
|
cls = LATENT.copy() |
|
cls["samples"] = comfy.utils.common_upscale(LATENT["samples"], width // 8, height // 8, scale_method, crop) |
|
return (cls, (width, height),) |