|
|
|
|
|
import torch |
|
import numpy as np |
|
from PIL import Image, ImageFilter |
|
|
|
class fDOF: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"depth": ("IMAGE",), |
|
"mode": (["mock","gaussian","box"],), |
|
"radius": ("INT", {"default": 8, "min": 1, "max": 128, "step": 1}), |
|
"samples": ("INT", {"default": 1, "min": 1, "max": 3, "step": 1}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "fdof_composite" |
|
|
|
CATEGORY = "WAS" |
|
|
|
def fdof_composite(self, image, depth, radius, samples, mode): |
|
|
|
if 'opencv-python' not in self.packages(): |
|
print("Installing CV2...") |
|
subprocess.check_call([sys.executable, '-m', 'pip', '-q', 'install', 'opencv-python']) |
|
|
|
import cv2 as cv |
|
|
|
|
|
i = 255. * image.cpu().numpy().squeeze() |
|
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) |
|
d = 255. * depth.cpu().numpy().squeeze() |
|
depth_img = Image.fromarray(np.clip(d, 0, 255).astype(np.uint8)) |
|
|
|
|
|
fdof_image = self.portraitBlur(img, depth_img, radius, samples, mode) |
|
|
|
return ( torch.from_numpy(np.array(fdof_image).astype(np.float32) / 255.0).unsqueeze(0), ) |
|
|
|
def medianFilter(self, img, diameter, sigmaColor, sigmaSpace): |
|
import cv2 as cv |
|
diameter = int(diameter); sigmaColor = int(sigmaColor); sigmaSpace = int(sigmaSpace) |
|
img = img.convert('RGB') |
|
img = cv.cvtColor(np.array(img), cv.COLOR_RGB2BGR) |
|
img = cv.bilateralFilter(img, diameter, sigmaColor, sigmaSpace) |
|
img = cv.cvtColor(np.array(img), cv.COLOR_BGR2RGB) |
|
return Image.fromarray(img).convert('RGB') |
|
|
|
def portraitBlur(self, img, mask, radius=5, samples=1, mode = 'mock'): |
|
mask = mask.resize(img.size).convert('L') |
|
if mode == 'mock': |
|
bimg = self.medianFilter(img, radius, (radius * 1500), 75) |
|
elif mode == 'gaussian': |
|
bimg = img.filter(ImageFilter.GaussianBlur(radius = radius)) |
|
elif mode == 'box': |
|
bimg = img.filter(ImageFilter.BoxBlur(radius)) |
|
bimg.convert(img.mode) |
|
rimg = None |
|
if samples > 1: |
|
for i in range(samples): |
|
if i == 0: |
|
rimg = Image.composite(img, bimg, mask) |
|
else: |
|
rimg = Image.composite(rimg, bimg, mask) |
|
else: |
|
rimg = Image.composite(img, bimg, mask).convert('RGB') |
|
|
|
return rimg |
|
|
|
def packages(self): |
|
import sys, subprocess |
|
return [r.decode().split('==')[0] for r in subprocess.check_output([sys.executable, '-m', 'pip', 'freeze']).split()] |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"fDOF": fDOF |
|
} |
|
|