# By WASasquatch ( Discord: WAS#0263 | https://civitai.com/user/WAS ) import torch, time, sys, subprocess import numpy as np from PIL import Image, ImageFilter import torchvision.transforms as transforms MIDAS_INSTALLED = False class MiDaS_Depth_Approx: def __init__(self): pass @classmethod def INPUT_TYPES(cls): return { "required": { "image": ("IMAGE",), "use_cpu": (["false", "true"],), "midas_model": (["DPT_Large", "DPT_Hybrid", "DPT_Small"],), "invert_depth": (["false", "true"],), }, } RETURN_TYPES = ("IMAGE",) FUNCTION = "midas_approx" CATEGORY = "WAS" def midas_approx(self, image, use_cpu, midas_model, invert_depth): global MIDAS_INSTALLED if not MIDAS_INSTALLED: self.install_midas() import cv2 as cv # Convert the input image tensor to a PIL Image i = 255. * image.cpu().numpy().squeeze() img = i print("Downloading and loading MiDaS Model...") midas = torch.hub.load("intel-isl/MiDaS", midas_model, trust_repo=True) device = torch.device("cuda") if torch.cuda.is_available() and use_cpu == 'false' else torch.device("cpu") print('MiDaS is using device:', device) midas.to(device).eval() midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms") if midas_model == "DPT_Large" or midas_model == "DPT_Hybrid": transform = midas_transforms.dpt_transform else: transform = midas_transforms.small_transform img = cv.cvtColor(img, cv.COLOR_BGR2RGB) input_batch = transform(img).to(device) print('Approximating depth from image...') with torch.no_grad(): prediction = midas(input_batch) prediction = torch.nn.functional.interpolate( prediction.unsqueeze(1), size=img.shape[:2], mode="bicubic", align_corners=False, ).squeeze() if invert_depth == 'true': depth = ( 255 - prediction.cpu().numpy().astype(np.uint8) ) depth = depth.astype(np.float32) else: depth = prediction.cpu().numpy().astype(np.float32) depth = depth * 255 / (np.max(depth)) / 255 # Invert depth map depth = cv.cvtColor(depth, cv.COLOR_GRAY2RGB) tensor = torch.from_numpy( depth )[None,] tensors = ( tensor, ) del midas, device, midas_transforms del transform, img, input_batch, prediction return tensors def install_midas(self): global MIDAS_INSTALLED if 'timm' not in self.packages(): print("Installing timm...") subprocess.check_call([sys.executable, '-m', 'pip', '-q', 'install', 'timm']) if 'opencv-python' not in self.packages(): print("Installing CV2...") subprocess.check_call([sys.executable, '-m', 'pip', '-q', 'install', 'opencv-python']) MIDAS_INSTALLED = True def packages(self): import sys, subprocess return [r.decode().split('==')[0] for r in subprocess.check_output([sys.executable, '-m', 'pip', 'freeze']).split()] NODE_CLASS_MAPPINGS = { "MiDaS Depth Approximation": MiDaS_Depth_Approx }