import custom_nodes.Derfuu_Nodes.types as type import custom_nodes.Derfuu_Nodes.fields as field from custom_nodes.Derfuu_Nodes.tree import TREE_LATENTS, TREE_IMAGES import math import torch import comfy.utils class EmptyLatentImage: def __init__(self, device="cpu"): self.device = device @classmethod def INPUT_TYPES(cls): return { "required": { "TUPLE": (type.TUPLE,), "batch_size": field.INT, } } RETURN_TYPES = (type.LATENT,) FUNCTION = "generate" CATEGORY = TREE_LATENTS def generate(self, TUPLE, batch_size=1): width = int(TUPLE[0]) height = int(TUPLE[1]) latent = torch.zeros([batch_size, 4, height // 8, width // 8]) return ({"samples": latent},) class ImageScale_Ratio: upscale_methods = ["nearest-exact", "bilinear", "area"] crop_methods = ["disabled", "center"] @classmethod def INPUT_TYPES(cls): return { "required": { "IMAGE": (type.IMAGE,), "TUPLE": (type.TUPLE,), "modifier": field.FLOAT, "upscale_method": (cls.upscale_methods,), "crop": (cls.crop_methods,)}} RETURN_TYPES = (type.IMAGE, type.TUPLE,) FUNCTION = "upscale" CATEGORY = TREE_IMAGES def upscale(self, IMAGE, upscale_method, TUPLE, modifier, crop): samples = IMAGE.movedim(-1, 1) width_B = int(TUPLE[0]) height_B = int(TUPLE[1]) height = math.ceil(height_B * modifier) width = math.ceil(width_B * modifier) cls = comfy.utils.common_upscale(samples, width, height, upscale_method, crop) cls = cls.movedim(1, -1) return (cls, (width, height),) class ImageScale_Side: upscale_methods = ["nearest-exact", "bilinear", "area"] crop_methods = ["disabled", "center"] def __init__(self) -> None: pass @classmethod def INPUT_TYPES(cls): return { "required": { "IMAGE": (type.IMAGE,), "TUPLE": (type.TUPLE,), "side_length": field.INT, "side": (["Width", "Height"],), "upscale_method": (cls.upscale_methods,), "crop": (cls.crop_methods,)}} RETURN_TYPES = (type.IMAGE, type.TUPLE,) FUNCTION = "upscale" CATEGORY = TREE_IMAGES def upscale(self, IMAGE, upscale_method, TUPLE, side_length, side, crop): samples = IMAGE.movedim(-1, 1) width_B = int(TUPLE[0]) height_B = int(TUPLE[1]) width = width_B height = height_B if side == "Width": heigh_ratio = height_B / width_B width = side_length height = heigh_ratio * width elif side == "Height": width_ratio = width_B / height_B height = side_length width = width_ratio * height width = math.ceil(width) height = math.ceil(height) cls = comfy.utils.common_upscale(samples, width, height, upscale_method, crop) cls = cls.movedim(1, -1) return (cls, (width, height), ) class LatentScale_Ratio: scale_methods = (["nearest-exact", "bilinear", "area"],) crop_methods = (["disabled", "center"],) def __init__(self): pass @classmethod def INPUT_TYPES(cls): return { "required": { "LATENT": (type.LATENT,), "TUPLE": (type.TUPLE,), "modifier": field.FLOAT, "scale_method": cls.scale_methods, "crop": cls.crop_methods, } } RETURN_TYPES = (type.LATENT, type.TUPLE,) FUNCTION = "scale" CATEGORY = TREE_LATENTS def scale(self, LATENT, scale_method, crop, modifier, TUPLE): width = int(TUPLE[0] * modifier) height = int(TUPLE[1] * modifier) cls = LATENT.copy() cls["samples"] = comfy.utils.common_upscale(LATENT["samples"], width // 8, height // 8, scale_method, crop) return (cls, (width, height),) class LatentScale_Side: upscale_methods = ["nearest-exact", "bilinear", "area"] crop_methods = ["disabled", "center"] def __init__(self) -> None: pass @classmethod def INPUT_TYPES(cls): return { "required": { "LATENT": (type.LATENT,), "TUPLE": (type.TUPLE,), "side_length": field.INT, "side": (["Width", "Height"],), "scale_method": (cls.upscale_methods,), "crop": (cls.crop_methods,)}} RETURN_TYPES = (type.LATENT, type.TUPLE,) FUNCTION = "upscale" CATEGORY = TREE_LATENTS def upscale(self, LATENT, scale_method, TUPLE, side_length, side, crop): width_B = int(TUPLE[0]) height_B = int(TUPLE[1]) width = width_B height = height_B if side == "Width": heigh_ratio = height_B / width_B width = side_length height = heigh_ratio * width elif side == "Height": width_ratio = width_B / height_B height = side_length width = width_ratio * height width = math.ceil(width) height = math.ceil(height) cls = LATENT.copy() cls["samples"] = comfy.utils.common_upscale(LATENT["samples"], width // 8, height // 8, scale_method, crop) return (cls, (width, height),)