# By WASasquatch (Discord: WAS#0263) import torch, os, json, random, hashlib from urllib.request import urlopen import json class WAS_NSP_CLIPTextEncoder: def __init__(self): pass @classmethod def INPUT_TYPES(s): return { "required": { "noodle_key": ("STRING", {"default": '__', "multiline": False}), "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "text": ("STRING", {"multiline": True}), "clip": ("CLIP",), } } RETURN_TYPES = ("CONDITIONING",) FUNCTION = "nsp_encode" CATEGORY = "conditioning" def nsp_encode(self, clip, text, noodle_key = '__', seed = 0): # Fetch the NSP Pantry local_pantry = 'ComfyUI/custom_nodes/nsp_pantry.json' if not os.path.exists(local_pantry): response = urlopen('https://raw.githubusercontent.com/WASasquatch/noodle-soup-prompts/main/nsp_pantry.json') tmp_pantry = json.loads(response.read()) # Dump JSON locally pantry_serialized = json.dumps(tmp_pantry, indent=4) with open(local_pantry, "w") as f: f.write(pantry_serialized) del response, tmp_pantry # Load local pantry with open(local_pantry, 'r') as f: nspterminology = json.load(f) if seed > 0 or seed < 1: random.seed(seed) # Parse Text new_text = text for term in nspterminology: # Target Noodle tkey = f'{noodle_key}{term}{noodle_key}' # How many occurances? tcount = new_text.count(tkey) # Apply random results for each noodle counted for _ in range(tcount): new_text = new_text.replace(tkey, random.choice(nspterminology[term]), 1) seed = seed+1 random.seed(seed) print('Parsed Prompt:', new_text) return ([[clip.encode(new_text), {}]], ) NODE_CLASS_MAPPINGS = { "CLIPTextEncode (NSP)": WAS_NSP_CLIPTextEncoder }