--- dataset_info: features: - name: image dtype: image - name: canny_images dtype: image - name: image_caption dtype: string splits: - name: train num_bytes: 1568029838.25 num_examples: 6462 download_size: 1566706053 dataset_size: 1568029838.25 configs: - config_name: default data_files: - split: train path: data/train-* --- from transformers import pipeline from datasets import load_dataset dataset_name = "Jieya/only_fractal_canny" faces = load_dataset(dataset_name) faces = faces["train"] captioner = pipeline("image-to-text",model="Salesforce/blip-image-captioning-large", device=0) def caption_image_data(example): image = example["image"] image_caption = captioner(image)[0]['generated_text'] example['image_caption'] = image_caption return example faces_proc = faces.map(caption_image_data) faces_proc.push_to_hub(f"Jieya/captioned_fractal_canny")