File size: 4,834 Bytes
139eb79 ddad405 139eb79 ddad405 139eb79 ddad405 139eb79 0e469ca 469d4f7 0e469ca 469d4f7 0e469ca 7b57a59 0e469ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
---
dataset_info:
- config_name: challenge_data
features:
- name: pos_item_ids
sequence: string
- name: pos_item_contents
sequence: string
- name: question
dtype: string
- name: question_id
dtype: string
- name: instruction
dtype: string
- name: img_path
dtype: string
splits:
- name: train
num_bytes: 890417
num_examples: 6415
download_size: 169300
dataset_size: 890417
- config_name: challenge_passage
features:
- name: passage_id
dtype: string
- name: passage_content
dtype: string
- name: page_screenshot
dtype: string
splits:
- name: train
num_bytes: 44091445
num_examples: 47318
download_size: 24786149
dataset_size: 44091445
configs:
- config_name: challenge_data
data_files:
- split: train
path: challenge_data/train-*
- config_name: challenge_passage
data_files:
- split: train
path: challenge_passage/train-*
---
# M2KR-Challenge Dataset
A multimodal retrieval dataset for image-to-document and image+text-to-document matching tasks.
## Dataset Overview
This dataset contains two main subsets designed for multimodal retrieval challenges:
- **challenge_data**: Query data with images and optional text questions (6.42k samples)
- **challenge_passage**: Document collection with textual passages and associated web screenshot path (47.3k passages)
## Dataset Structure
### challenge_data (6,420 rows)
**Columns**:
- `img_path`: Image filename (string)
- `instruction`: Task instruction for description generation
- `question`: Optional text query (53% populated, if exist then it is a image+text-to-document retrieval task, else, it is a image-to-document task )
- `question_id`: Unique identifier (string)
- `pos_item_ids`: Sequence of positive item IDs, the ground truth passage_id (empty, removed for private test set)
- `pos_item_contents`: Sequence of positive item contents (empty, removed for private test set)
**Task Types**:
1. **Image-to-Document Retrieval**: When `question` is empty (image query)
2. **Multimodal Retrieval**: When `question` contains text (image + text query)
### challenge_passage (47,300 rows)
**Columns**:
- `passage_id`: Unique passage identifier (string)
- `passage_content`: Textual description containing:
- Image description
- Structured details about persons (birth/death dates, occupations, locations, etc.)
- `page_screenshot`: Associated image filename (string)
For the retrieval task, you will need to retrieve the corresponding passage from the 47K-passage pool for each sample in challenge_data.
## Images
The image data is provided in separate archives:
- **Web_Image.zip.001**
- **Web_Image.zip.002**
- **Web_Image.zip.003**
These archives contain the web screenshots corresponding to the document passages.
- **query_images.zip**
Contains the query images used in the challenge.
---
## References
**Paper or resources for more information:**
- **Paper:** https://arxiv.org/abs/2402.08327
- **Project Page:** https://preflmr.github.io/
- **Huggingface Implementation:** https://github.com/LinWeizheDragon/FLMR
**Citation**
If our work helped your research, please kindly cite our paper for PreFLMR.
```
@inproceedings{lin-etal-2024-preflmr,
title = "{P}re{FLMR}: Scaling Up Fine-Grained Late-Interaction Multi-modal Retrievers",
author = "Lin, Weizhe and
Mei, Jingbiao and
Chen, Jinghong and
Byrne, Bill",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.acl-long.289",
pages = "5294--5316",
abstract = "Large Multimodal Models (LMMs) excel in natural language and visual understanding but are challenged by exacting tasks such as Knowledge-based Visual Question Answering (KB-VQA) which involve the retrieval of relevant information from document collections to use in shaping answers to questions. We present an extensive training and evaluation framework, M2KR, for KB-VQA. M2KR contains a collection of vision and language tasks which we have incorporated into a single suite of benchmark tasks for training and evaluating general-purpose multi-modal retrievers. We use M2KR to develop PreFLMR, a pre-trained version of the recently developed Fine-grained Late-interaction Multi-modal Retriever (FLMR) approach to KB-VQA, and we report new state-of-the-art results across a range of tasks. We also present investigations into the scaling behaviors of PreFLMR intended to be useful in future developments in general-purpose multi-modal retrievers.",
}
``` |