Jiwonny29 commited on
Commit
a87c1f0
1 Parent(s): 6b2941e

Create project1.py

Browse files
Files changed (1) hide show
  1. project1.py +157 -0
project1.py ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datasets
2
+ import pandas as pd
3
+ import numpy as np
4
+
5
+ _CITATION = """\
6
+ @InProceedings{huggingface:dataset,
7
+ title = {A great new dataset},
8
+ author={huggingface, Inc.
9
+ },
10
+ year={2020}
11
+ }
12
+ """
13
+
14
+ _DESCRIPTION = """\
15
+ This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
16
+ """
17
+
18
+ _HOMEPAGE = ""
19
+
20
+ _LICENSE = ""
21
+
22
+ class HealthStatisticsDataset(datasets.GeneratorBasedBuilder):
23
+ def _info(self):
24
+ return datasets.DatasetInfo(
25
+ description=_DESCRIPTION,
26
+ features=datasets.Features(
27
+ {
28
+ "Year": datasets.Value("int32"),
29
+ "LocationAbbr": datasets.Value("string"),
30
+ "LocationDesc": datasets.Value("string"),
31
+ "Latitude": datasets.Value("float32"),
32
+ "Longitude": datasets.Value("float32"),
33
+ "Disease_Type": datasets.Value("int32"),
34
+ "Data_Value_Type": datasets.Value("int32"),
35
+ "Data_Value": datasets.Value("float32"),
36
+ "Break_Out_Category": datasets.Value("string"),
37
+ "Break_Out_Details": datasets.Value("string"),
38
+ "Break_Out_Type": datasets.Value("int32"),
39
+ "Life_Expectancy": datasets.Value("float32")
40
+ }
41
+ ),
42
+ supervised_keys=None,
43
+ homepage=_HOMEPAGE,
44
+ license=_LICENSE,
45
+ citation=_CITATION,
46
+ )
47
+
48
+ def _split_generators(self, dl_manager):
49
+ data = pd.read_csv(dl_manager.download_and_extract("https://docs.google.com/uc?export=download&id=1eChYmZ3RMq1v-ek1u6DD2m_dGIrz3sbi&confirm=t"))
50
+ processed_data = self.preprocess_data(data)
51
+ return [
52
+ datasets.SplitGenerator(
53
+ name=datasets.Split.TRAIN,
54
+ gen_kwargs={"data": processed_data},
55
+ ),
56
+ ]
57
+
58
+ def _generate_examples(self, data):
59
+ for key, row in data.iterrows():
60
+ year = int(row['Year']) if 'Year' in row else None
61
+ latitude, longitude = None, None
62
+ if isinstance(row['Geolocation'], str):
63
+ geo_str = row['Geolocation'].replace('POINT (', '').replace(')', '')
64
+ longitude, latitude = map(float, geo_str.split())
65
+ yield key, {
66
+ "Year": year,
67
+ "LocationAbbr": row.get('LocationAbbr', None),
68
+ "LocationDesc": row.get('LocationDesc', None),
69
+ "Latitude": latitude,
70
+ "Longitude": longitude,
71
+ "Disease_Type": int(row["Disease_Type"]) if "Disease_Type" in row else None,
72
+ "Data_Value_Type": int(row["Data_Value_Type"]) if "Data_Value_Type" in row else None,
73
+ "Data_Value": float(row["Data_Value"]) if "Data_Value" in row else None,
74
+ "Break_Out_Category": row.get("Break_Out_Category", None),
75
+ "Break_Out_Details": row.get("Break_Out_Details", None),
76
+ "Break_Out_Type": int(row["Break_Out_Type"]) if 'Break_Out_Type' in row else None,
77
+ "Life_Expectancy": float(row["Life_Expectancy"]) if row.get("Life_Expectancy") else None
78
+ }
79
+
80
+ @staticmethod
81
+ def preprocess_data(data):
82
+ data = data[['YearStart', 'LocationAbbr', 'LocationDesc', 'Geolocation', 'Topic', 'Question', 'Data_Value_Type', 'Data_Value', 'Data_Value_Alt',
83
+ 'Low_Confidence_Limit', 'High_Confidence_Limit', 'Break_Out_Category', 'Break_Out']]
84
+
85
+ pd.options.mode.chained_assignment = None
86
+
87
+ disease_columns = [
88
+ 'Major cardiovascular disease mortality rate among US adults (18+); NVSS',
89
+ 'Diseases of the heart (heart disease) mortality rate among US adults (18+); NVSS',
90
+ 'Acute myocardial infarction (heart attack) mortality rate among US adults (18+); NVSS',
91
+ 'Coronary heart disease mortality rate among US adults (18+); NVSS',
92
+ 'Heart failure mortality rate among US adults (18+); NVSS',
93
+ 'Cerebrovascular disease (stroke) mortality rate among US adults (18+); NVSS',
94
+ 'Ischemic stroke mortality rate among US adults (18+); NVSS',
95
+ 'Hemorrhagic stroke mortality rate among US adults (18+); NVSS'
96
+ ]
97
+
98
+ disease_column_mapping = {column_name: index for index, column_name in enumerate(disease_columns)}
99
+ data['Question'] = data['Question'].apply(lambda x: disease_column_mapping.get(x, -1))
100
+
101
+ sex_columns = ['Male', 'Female']
102
+ sex_column_mapping = {column_name: index + 1 for index, column_name in enumerate(sex_columns)}
103
+
104
+ age_columns = ['18-24', '25-44', '45-64', '65+']
105
+ age_column_mapping = {column_name: index + 1 for index, column_name in enumerate(age_columns)}
106
+
107
+ race_columns = ['Non-Hispanic White', 'Non-Hispanic Black', 'Hispanic', 'Other']
108
+ race_column_mapping = {column_name: index + 1 for index, column_name in enumerate(race_columns)}
109
+
110
+ def map_break_out_category(value):
111
+ if value in sex_column_mapping:
112
+ return sex_column_mapping[value]
113
+ elif value in age_column_mapping:
114
+ return age_column_mapping[value]
115
+ elif value in race_column_mapping:
116
+ return race_column_mapping[value]
117
+ else:
118
+ return value
119
+
120
+ data['Break_Out_Type'] = data['Break_Out'].apply(map_break_out_category)
121
+ data.drop(columns=['Topic', 'Low_Confidence_Limit', 'High_Confidence_Limit', 'Data_Value_Alt'], axis=1, inplace=True)
122
+ data['Data_Value_Type'] = data['Data_Value_Type'].apply(lambda x: 1 if x == 'Age-Standardized' else 0)
123
+ data.rename(columns={'Question':'Disease_Type', 'YearStart':'Year', 'Break_Out':'Break_Out_Details'}, inplace=True)
124
+ data['Break_Out_Type'] = data['Break_Out_Type'].replace('Overall', 0)
125
+
126
+ pd.options.mode.chained_assignment = 'warn'
127
+
128
+ lt2000 = pd.read_csv("https://docs.google.com/uc?export=download&id=1ktRNl7jg0Z83rkymD9gcsGLdVqVaFtd-&confirm=t")
129
+ lt2000 = lt2000[(lt2000['race_name'] == 'Total') & (lt2000['age_name'] == '<1 year')]
130
+ lt2000 = lt2000[['location_name', 'val']]
131
+ lt2000.rename(columns={'val':'Life_Expectancy'}, inplace=True)
132
+
133
+ lt2005 = pd.read_csv("https://docs.google.com/uc?export=download&id=1xZqeOgj32-BkOhDTZVc4k_tp1ddnOEh7&confirm=t")
134
+ lt2005 = lt2005[(lt2005['race_name'] == 'Total') & (lt2005['age_name'] == '<1 year')]
135
+ lt2005 = lt2005[['location_name', 'val']]
136
+ lt2005.rename(columns={'val':'Life_Expectancy'}, inplace=True)
137
+
138
+ lt2010 = pd.read_csv("https://docs.google.com/uc?export=download&id=1ItqHBuuUa38PVytfahaAV8NWwbhHMMg8&confirm=t")
139
+ lt2010 = lt2010[(lt2010['race_name'] == 'Total') & (lt2010['age_name'] == '<1 year')]
140
+ lt2010 = lt2010[['location_name', 'val']]
141
+ lt2010.rename(columns={'val':'Life_Expectancy'}, inplace=True)
142
+
143
+ lt2015 = pd.read_csv("https://docs.google.com/uc?export=download&id=1rOgQY1RQiry2ionTKM_UWgT8cYD2E0vX&confirm=t")
144
+ lt2015 = lt2015[(lt2015['race_name'] == 'Total') & (lt2015['age_name'] == '<1 year')]
145
+ lt2015 = lt2015[['location_name', 'val']]
146
+ lt2015.rename(columns={'val':'Life_Expectancy'}, inplace=True)
147
+
148
+ lt_data = pd.concat([lt2000, lt2005, lt2010, lt2015])
149
+ lt_data.drop_duplicates(subset=['location_name'], inplace=True)
150
+
151
+ data2 = pd.merge(data, lt_data, how='inner', left_on='LocationDesc', right_on='location_name')
152
+ data2.drop(columns=['location_name'], axis=1, inplace=True)
153
+ data2 = data2[(data2['Break_Out_Details'] != '75+') & (data2['Break_Out_Details'] != '35+')]
154
+ data2.rename(columns={'Question':'Disease_Type'}, inplace=True)
155
+ data2['Life_Expectancy'] = np.where(data2['Break_Out_Type'] == 0, data2['Life_Expectancy'], np.nan)
156
+ data2 = data2.reset_index(drop=True)
157
+ return data2