|
import json |
|
import struct |
|
import torch |
|
import threading |
|
import warnings |
|
|
|
|
|
|
|
|
|
DTYPE_MAPPING = { |
|
'F64': (torch.float64, 8), |
|
'F32': (torch.float32, 4), |
|
'F16': (torch.float16, 2), |
|
'BF16': (torch.bfloat16, 2), |
|
'I8': (torch.int8, 1), |
|
'I64': (torch.int64, 8), |
|
'I32': (torch.int32, 4), |
|
'I16': (torch.int16, 2), |
|
"F8_E4M3": (torch.float8_e4m3fn, 1), |
|
"F8_E5M2": (torch.float8_e5m2, 1), |
|
} |
|
|
|
class InSafetensorsDict: |
|
def __init__(self, f, buffer_size): |
|
self.default_buffer_size = buffer_size |
|
self.file = f |
|
self.header_size, self.header = self._read_header() |
|
self.buffer = bytearray() |
|
self.buffer_start_offset = 8 + self.header_size |
|
self.lock = threading.Lock() |
|
|
|
def __del__(self): |
|
self.close() |
|
|
|
def __getitem__(self, key): |
|
if key not in self.header or key == "__metadata__": |
|
raise KeyError(key) |
|
return self._load_tensor(key) |
|
|
|
def __iter__(self): |
|
return iter(self.keys()) |
|
|
|
def __len__(self): |
|
return len(self.header) |
|
|
|
def close(self): |
|
self.file.close() |
|
self.buffer = None |
|
self.header = None |
|
|
|
def keys(self): |
|
return ( |
|
key |
|
for key in self.header.keys() |
|
if key != "__metadata__" |
|
) |
|
|
|
def values(self): |
|
for key in self.keys(): |
|
yield self[key] |
|
|
|
def items(self): |
|
for key in self.keys(): |
|
yield key, self[key] |
|
|
|
def _read_header(self): |
|
header_size_bytes = self.file.read(8) |
|
header_size = struct.unpack('<Q', header_size_bytes)[0] |
|
header_json = self.file.read(header_size).decode('utf-8').strip() |
|
header = json.loads(header_json) |
|
|
|
|
|
sorted_header = dict(sorted(header.items(), key=lambda item: item[1].get('data_offsets', [0])[0])) |
|
return header_size, sorted_header |
|
|
|
def _ensure_buffer(self, start_pos, length): |
|
if start_pos < self.buffer_start_offset or start_pos + length > self.buffer_start_offset + len(self.buffer): |
|
self.file.seek(start_pos) |
|
necessary_buffer_size = max(self.default_buffer_size, length) |
|
if len(self.buffer) < necessary_buffer_size: |
|
self.buffer = bytearray(necessary_buffer_size) |
|
else: |
|
self.buffer = self.buffer[:necessary_buffer_size] |
|
|
|
self.file.readinto(self.buffer) |
|
self.buffer_start_offset = start_pos |
|
|
|
def _load_tensor(self, tensor_name): |
|
tensor_info = self.header[tensor_name] |
|
offsets = tensor_info['data_offsets'] |
|
dtype, dtype_bytes = DTYPE_MAPPING[tensor_info['dtype']] |
|
shape = tensor_info['shape'] |
|
total_bytes = offsets[1] - offsets[0] |
|
absolute_start_pos = 8 + self.header_size + offsets[0] |
|
with warnings.catch_warnings(): |
|
warnings.simplefilter('ignore') |
|
with self.lock: |
|
self._ensure_buffer(absolute_start_pos, total_bytes) |
|
buffer_offset = absolute_start_pos - self.buffer_start_offset |
|
return torch.frombuffer(self.buffer, count=total_bytes // dtype_bytes, offset=buffer_offset, dtype=dtype).reshape(shape) |
|
|