|
import pandas as pd |
|
import re |
|
from concurrent.futures import ProcessPoolExecutor |
|
from tqdm import tqdm |
|
import os |
|
import glob |
|
|
|
|
|
science_keywords_list = [ |
|
|
|
"classical mechanics", "quantum mechanics", "thermodynamics", "statistical mechanics", |
|
"electromagnetism", "optics", "acoustics", "relativity", |
|
"particle physics", "nuclear physics", "atomic physics", "molecular physics", |
|
"condensed matter physics", "solid state physics", "fluid dynamics", "plasma physics", |
|
"astrophysics", "cosmology", "gravitational physics", "space physics", |
|
"geophysics", "biophysics", "chemical physics", "material science", |
|
"energy physics", "environmental physics", "medical physics", "computational physics", |
|
"high energy physics", "theoretical physics", "experimental physics", "quantum field theory", |
|
"quantum optics", "quantum computing", "nanophysics", "nanotechnology", |
|
"electrodynamics", "magnetohydrodynamics", "photovoltaics", "superconductivity", |
|
"non-linear dynamics", "chaos theory", "string theory", "loop quantum gravity", |
|
|
|
|
|
"astronomy", "astrophysics", "cosmology", "space exploration", "exoplanets", |
|
"spacecraft", "space shuttle", "rocket science", "satellites", "International Space Station", |
|
"Hubble Space Telescope", "Mars rovers", "moon landing", "lunar mission", "orbital mechanics", |
|
"zero gravity", "microgravity", "space colonization", "astrobiology", "planetology", |
|
"dark matter", "dark energy", "black holes", "neutron stars", "pulsars", |
|
"space probe", "deep space", "interstellar travel", "galaxies", "nebulae", |
|
"stellar evolution", "solar system", "comets", "asteroids", "meteorites", |
|
"space weather", "cosmic radiation", "extraterrestrial life", "SETI", "alien planets", |
|
"space suit", "spacewalk", "gravity assist", "launch vehicle", "reusable rockets", |
|
"space tourism", "private spaceflight", "space elevator", "falcon rocket", "starship", "NASA", |
|
|
|
|
|
"chemistry lab", "physics lab", "science lab", "laboratory write-up", |
|
"experimental write-up", "lab report", "experiment procedure", |
|
"materials and methods", "scientific method", "chemical reaction", |
|
"titration", "stoichiometry", "molecular structure", "acid-base experiment", |
|
"organic chemistry lab", "Newton's laws experiment", "electric circuits lab", |
|
"magnetism experiment", "thermodynamics lab", "momentum lab", |
|
"experiment", "science project", "visual perception", "color and light", "optics experiment", |
|
"color spectrum", "materials list", "step-by-step instructions", "procedure", |
|
"instructions", "kids experiment", "learn about colors", "exploration of light", |
|
"hands-on science", "STEM activity", |
|
"learning through experimentation", "visual effects", |
|
"spin speed", "color change", |
|
|
|
|
|
"addition", "subtraction", "multiplication", |
|
"fraction", "decimal", "percentage", "ratio", "proportion", |
|
"equation", "coefficient", |
|
"polynomial", "quadratic", "exponential", "logarithm", "factorial", |
|
"sum", "quotient", |
|
"median", |
|
"data", "analysis", |
|
"graph", "function", "linear", |
|
"nonlinear", "slope", "intercept", "coordinate", |
|
"geometry", "angle", "triangle", "rectangle", "circle", |
|
"polygon", "perimeter", |
|
"circumference", "diameter", "radius", "pythagorean", |
|
"theorem", "trigonometry", "sine", "cosine", "tangent", |
|
"calculus", |
|
"sequence", "convergence", |
|
"vector", "algebra", "arithmetic", |
|
"computation", "measurement", |
|
|
|
|
|
"deductive reasoning", "inductive reasoning", "abductive reasoning", "logical fallacy", |
|
"syllogism", "proposition", "premise", "conclusion", |
|
"argument", "critical thinking", "analytical skills", "hypothesis testing", |
|
"problem analysis", "brainstorming", "decision making", "creative thinking", |
|
"heuristic", "algorithm", "data analysis", "causal reasoning", |
|
"correlation", "evidence-based reasoning", "validity", "soundness", |
|
"cognitive bias", "confirmation bias", "cognitive dissonance", "logical consistency", |
|
"counterargument", "debate", "dialectic", "socratic questioning", |
|
"root cause analysis", "SWOT analysis", "decision tree", "flow chart", |
|
"mind mapping", "ideation", "brainwriting", "lateral thinking", |
|
"problem decomposition", "synthesis", "pattern recognition", "inference", |
|
"troubleshooting", "risk assessment", "scenario planning", "cost-benefit analysis", |
|
"optimization", "simulation", "strategic planning", "logical operator", |
|
] |
|
|
|
|
|
|
|
science_keywords = [ |
|
r"\b" + re.escape(keyword).replace(r'\ ', ' ') + r"\b" for keyword in science_keywords_list |
|
] |
|
|
|
|
|
science_regex = r'(?:' + r'|'.join(science_keywords) + r')' |
|
|
|
|
|
def process_chunk(chunk): |
|
|
|
if list(chunk.columns) != ['score', 'text', 'url']: |
|
chunk.columns = ['score', 'text', 'url'] |
|
|
|
|
|
|
|
score_counts = chunk['score'].astype(str).str.count(science_regex, flags=re.IGNORECASE) |
|
url_counts = chunk['url'].astype(str).str.count(science_regex, flags=re.IGNORECASE) |
|
text_counts = chunk['text'].astype(str).str.count(science_regex, flags=re.IGNORECASE) |
|
|
|
|
|
score_counts = score_counts.fillna(0) |
|
url_counts = url_counts.fillna(0) |
|
text_counts = text_counts.fillna(0) |
|
|
|
|
|
match_counts = score_counts + url_counts + text_counts |
|
match_counts = match_counts.astype(int) |
|
|
|
|
|
|
|
|
|
threshold = 50 |
|
|
|
|
|
|
|
|
|
filtered_chunk = chunk[match_counts >= threshold].copy() |
|
filtered_chunk['science_score'] = match_counts[match_counts >= threshold] |
|
|
|
|
|
filtered_chunk['score'] = filtered_chunk['science_score'] |
|
filtered_chunk = filtered_chunk.drop(columns=['science_score']) |
|
|
|
return filtered_chunk |
|
|
|
|
|
def process_file(input_file, output_file): |
|
|
|
chunk_size = 10000 |
|
reader = pd.read_csv(input_file, chunksize=chunk_size, header=None) |
|
|
|
|
|
first_chunk = True |
|
|
|
|
|
num_workers = 20 |
|
|
|
|
|
batch_size = num_workers * 4 |
|
|
|
chunk_list = [] |
|
with ProcessPoolExecutor(max_workers=num_workers) as executor: |
|
for chunk in tqdm(reader, desc=f'Reading chunks from {os.path.basename(input_file)}'): |
|
chunk_list.append(chunk) |
|
if len(chunk_list) == batch_size: |
|
|
|
futures = [executor.submit(process_chunk, c) for c in chunk_list] |
|
for future in tqdm(futures, desc='Processing batch', leave=False): |
|
filtered_chunk = future.result() |
|
if not filtered_chunk.empty: |
|
if first_chunk: |
|
filtered_chunk.to_csv(output_file, mode='w', index=False, header=False) |
|
first_chunk = False |
|
else: |
|
filtered_chunk.to_csv(output_file, mode='a', index=False, header=False) |
|
chunk_list = [] |
|
|
|
if chunk_list: |
|
futures = [executor.submit(process_chunk, c) for c in chunk_list] |
|
for future in tqdm(futures, desc='Processing last batch', leave=False): |
|
filtered_chunk = future.result() |
|
if not filtered_chunk.empty: |
|
if first_chunk: |
|
filtered_chunk.to_csv(output_file, mode='w', index=False, header=False) |
|
first_chunk = False |
|
else: |
|
filtered_chunk.to_csv(output_file, mode='a', index=False, header=False) |
|
print(f'Finished processing {input_file}') |
|
|
|
|
|
data_dir = '/media/joe/512-3/csv' |
|
years = [f'CC-MAIN-{year}' for year in range(2013, 2025)] |
|
directories = [os.path.join(data_dir, year) for year in years] |
|
|
|
|
|
for dir_path in directories: |
|
if not os.path.isdir(dir_path): |
|
print(f'Directory not found: {dir_path}') |
|
continue |
|
csv_files = glob.glob(os.path.join(dir_path, '*.csv')) |
|
print(f'Found {len(csv_files)} CSV files in {dir_path}') |
|
for input_file in csv_files: |
|
|
|
base_name = os.path.basename(input_file) |
|
output_file = os.path.join( |
|
dir_path, 'math_' + base_name |
|
) |
|
|
|
|
|
if os.path.exists(output_file): |
|
print(f'Output file already exists. Skipping: {output_file}') |
|
continue |
|
|
|
process_file(input_file, output_file) |
|
|
|
|