Datasets:

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 2,347 Bytes
a79e99a
 
 
 
 
 
 
 
 
782d887
647e5de
 
782d887
647e5de
 
782d887
647e5de
 
782d887
647e5de
 
782d887
647e5de
 
782d887
647e5de
 
782d887
647e5de
 
a79e99a
 
782d887
647e5de
 
782d887
 
647e5de
782d887
 
647e5de
782d887
 
647e5de
782d887
 
647e5de
782d887
 
647e5de
782d887
8f9a5c3
647e5de
 
 
 
 
 
 
a79e99a
647e5de
 
 
2f68547
647e5de
 
 
2f68547
647e5de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
license: cc-by-nc-sa-4.0
task_categories:
- question-answering
language:
- en
configs:
- config_name: train
  data_files:
  - split: 2ppl
    path:
    - train/people2_num200.jsonl
  - split: 3ppl
    path:
    - train/people3_num1000.jsonl
  - split: 4ppl
    path:
    - train/people4_num1000.jsonl
  - split: 5ppl
    path:
    - train/people5_num1000.jsonl
  - split: 6ppl
    path:
    - train/people6_num1000.jsonl
  - split: 7ppl
    path:
    - train/people7_num1000.jsonl
  - split: 8ppl
    path:
    - train/people8_num1000.jsonl
- config_name: test
  data_files:
  - split: 2ppl
    path:
    - test/people2_num100.jsonl
  - split: 3ppl
    path:
    - test/people3_num100.jsonl
  - split: 4ppl
    path:
    - test/people4_num100.jsonl
  - split: 5ppl
    path:
    - test/people5_num100.jsonl
  - split: 6ppl
    path:
    - test/people6_num100.jsonl
  - split: 7ppl
    path:
    - test/people7_num100.jsonl
  - split: 8ppl
    path:
    - test/people8_num100.jsonl
tags:
- logical
- reasoning
pretty_name: K
size_categories:
- 1K<n<10K
---



# 📘 knights-and-knaves Dataset [[Project Page]](https://memkklogic.github.io/)

The **knights-and-knaves dataset** serves as a logical reasoning benchmark to evaluate the reasoning capabilities of LLMs.

**🚀🚀 Check out the [perturbed knights-and-knaves dataset](https://huggingface.co/datasets/K-and-K/perturbed-knights-and-knaves) to evaluate the memorization of LLMs in reasoning.** 

## Loading the dataset

To load the dataset:

```python
from datasets import load_dataset
data_subject = load_dataset('K-and-K/knights-and-knaves','test',split="2ppl")
```
* Available subset: `test`, `train`.
* Available split: `2ppl`,`3ppl`,`4ppl`,`5ppl`,`6ppl`,`7ppl`,`8ppl`.

## 🛠️ Codebase

To evaluate LLMs on our datasets, visit our [GitHub repository](https://github.com/AlphaPav/mem-kk-logic/).

## ⭐ Citing our Work

If you find our codebase and datasets beneficial, kindly cite our work:

```bibtex
@article{xie2024memorization,
title={On Memorization of Large Language Models in Logical Reasoning}, 
author={Chulin Xie and Yangsibo Huang and Chiyuan Zhang and Da Yu and Xinyun Chen and Bill Yuchen Lin and Bo Li and Badih Ghazi and Ravi Kumar},
year={2024},
eprint={2410.23123},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2410.23123}, 
}
```