KashiwaByte's picture
initial commit
7c93e9d
raw
history blame
3.34 kB
from datasets import Dataset
import pandas as pd
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq, TrainingArguments, HfArgumentParser, Trainer
import os
import torch
from peft import LoraConfig, TaskType, get_peft_model
from dataclasses import dataclass, field
import deepspeed
deepspeed.ops.op_builder.CPUAdamBuilder().load()
@dataclass
class FinetuneArguments:
# 微调参数
# field:dataclass 函数,用于指定变量初始化
model_path: str = field(default="./OpenBMB/MiniCPM-2B-sft-fp32")
# 用于处理数据集的函数
def process_func(example):
MAX_LENGTH = 512 # Llama分词器会将一个中文字切分为多个token,因此需要放开一些最大长度,保证数据的完整性
input_ids, attention_mask, labels = [], [], []
instruction = tokenizer(f"<User>{example['instruction']+example['input']}<AI>", add_special_tokens=False) # add_special_tokens 不在开头加 special_tokens
response = tokenizer(f"{example['output']}", add_special_tokens=False)
input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id]
attention_mask = instruction["attention_mask"] + response["attention_mask"] + [1] # 因为eos token咱们也是要关注的所以 补充为1
labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id]
if len(input_ids) > MAX_LENGTH: # 做一个截断
input_ids = input_ids[:MAX_LENGTH]
attention_mask = attention_mask[:MAX_LENGTH]
labels = labels[:MAX_LENGTH]
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels
}
# loraConfig
config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
target_modules=["q_proj", "v_proj"], # 这个不同的模型需要设置不同的参数,需要看模型中的attention层
inference_mode=False, # 训练模式
r=8, # Lora 秩
lora_alpha=32, # Lora alaph,具体作用参见 Lora 原理
lora_dropout=0.1# Dropout 比例
)
if "__main__" == __name__:
# 解析参数
# Parse 命令行参数
finetune_args, training_args = HfArgumentParser(
(FinetuneArguments, TrainingArguments)
).parse_args_into_dataclasses()
# 处理数据集
# 将JSON文件转换为CSV文件
df = pd.read_json('./Dataset/Read_Comperhension50k.jsonl',lines=True)
ds = Dataset.from_pandas(df)
# 加载tokenizer
tokenizer = AutoTokenizer.from_pretrained(finetune_args.model_path, use_fast=False, trust_remote_code=True)
tokenizer.padding_side = 'right'
tokenizer.pad_token_id = tokenizer.eos_token_id
# 将数据集变化为token形式
tokenized_id = ds.map(process_func, remove_columns=ds.column_names)
# 创建模型并以半精度形式加载
model = AutoModelForCausalLM.from_pretrained(finetune_args.model_path, trust_remote_code=True, torch_dtype=torch.half, device_map={"": int(os.environ.get("LOCAL_RANK") or 0)})
model = get_peft_model(model, config)
# 使用trainer训练
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_id,
data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
)
trainer.train() # 开始训练
trainer.save_model() # 保存模型