from datasets import Dataset import pandas as pd from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq, TrainingArguments, HfArgumentParser, Trainer import os import torch from peft import LoraConfig, TaskType, get_peft_model from dataclasses import dataclass, field import deepspeed deepspeed.ops.op_builder.CPUAdamBuilder().load() @dataclass class FinetuneArguments: # 微调参数 # field:dataclass 函数,用于指定变量初始化 model_path: str = field(default="./OpenBMB/MiniCPM-2B-sft-fp32") # 用于处理数据集的函数 def process_func(example): MAX_LENGTH = 512 # Llama分词器会将一个中文字切分为多个token,因此需要放开一些最大长度,保证数据的完整性 input_ids, attention_mask, labels = [], [], [] instruction = tokenizer(f"{example['instruction']+example['input']}", add_special_tokens=False) # add_special_tokens 不在开头加 special_tokens response = tokenizer(f"{example['output']}", add_special_tokens=False) input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id] attention_mask = instruction["attention_mask"] + response["attention_mask"] + [1] # 因为eos token咱们也是要关注的所以 补充为1 labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id] if len(input_ids) > MAX_LENGTH: # 做一个截断 input_ids = input_ids[:MAX_LENGTH] attention_mask = attention_mask[:MAX_LENGTH] labels = labels[:MAX_LENGTH] return { "input_ids": input_ids, "attention_mask": attention_mask, "labels": labels } # loraConfig config = LoraConfig( task_type=TaskType.CAUSAL_LM, target_modules=["q_proj", "v_proj"], # 这个不同的模型需要设置不同的参数,需要看模型中的attention层 inference_mode=False, # 训练模式 r=8, # Lora 秩 lora_alpha=32, # Lora alaph,具体作用参见 Lora 原理 lora_dropout=0.1# Dropout 比例 ) if "__main__" == __name__: # 解析参数 # Parse 命令行参数 finetune_args, training_args = HfArgumentParser( (FinetuneArguments, TrainingArguments) ).parse_args_into_dataclasses() # 处理数据集 # 将JSON文件转换为CSV文件 df = pd.read_json('./Dataset/Read_Comperhension50k.jsonl',lines=True) ds = Dataset.from_pandas(df) # 加载tokenizer tokenizer = AutoTokenizer.from_pretrained(finetune_args.model_path, use_fast=False, trust_remote_code=True) tokenizer.padding_side = 'right' tokenizer.pad_token_id = tokenizer.eos_token_id # 将数据集变化为token形式 tokenized_id = ds.map(process_func, remove_columns=ds.column_names) # 创建模型并以半精度形式加载 model = AutoModelForCausalLM.from_pretrained(finetune_args.model_path, trust_remote_code=True, torch_dtype=torch.half, device_map={"": int(os.environ.get("LOCAL_RANK") or 0)}) model = get_peft_model(model, config) # 使用trainer训练 trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_id, data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True), ) trainer.train() # 开始训练 trainer.save_model() # 保存模型