File size: 5,125 Bytes
c36ff88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d84015
c36ff88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""FreebaseQA: A Trivia-type QA Data Set over the Freebase Knowledge Graph"""


import json

import datasets


_CITATION = """\
@article{jiang2019freebaseqa,
  title={FreebaseQA: A New Factoid QA Dataset Matching Trivia-Style Question-Answer Pairs with Freebase},
  author={Jiang, Kelvin and Wu, Dekun and Jiang, Hui},
  journal={north american chapter of the association for computational linguistics},
  year={2019}
}
"""

_DESCRIPTION = """\
FreebaseQA is for open-domain factoid question answering (QA) tasks over structured knowledge bases, like Freebase The data set is generated by matching trivia-type question-answer pairs with subject-predicateobject triples in Freebase.
"""

_HOMEPAGE = "https://github.com/kelvin-jiang/FreebaseQA"

_LICENSE = ""


_REPO = "https://raw.githubusercontent.com/kelvin-jiang/FreebaseQA/master/"

_URLs = {
    "train": _REPO + "FreebaseQA-train.json",
    "eval": _REPO + "FreebaseQA-eval.json",
    "dev": _REPO + "FreebaseQA-dev.json",
}


class FreebaseQA(datasets.GeneratorBasedBuilder):
    """FreebaseQA: A Trivia-type QA Data Set over the Freebase Knowledge Graph"""

    VERSION = datasets.Version("1.0.0")

    def _info(self):
        features = datasets.Features(
            {
                "Question-ID": datasets.Value("string"),
                "RawQuestion": datasets.Value("string"),
                "ProcessedQuestion": datasets.Value("string"),
                "Parses": datasets.Sequence(
                    {
                        "Parse-Id": datasets.Value("string"),
                        "PotentialTopicEntityMention": datasets.Value("string"),
                        "TopicEntityName": datasets.Value("string"),
                        "TopicEntityMid": datasets.Value("string"),
                        "InferentialChain": datasets.Value("string"),
                        "Answers": datasets.Sequence(
                            {
                                "AnswersMid": datasets.Value("string"),
                                "AnswersName": datasets.Sequence(datasets.Value("string")),
                            }
                        ),
                    }
                ),
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        data_dir = dl_manager.download_and_extract(_URLs)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": data_dir["train"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": data_dir["eval"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": data_dir["dev"],
                },
            ),
        ]

    def _generate_examples(self, filepath):
        """Yields examples."""

        with open(filepath, encoding="utf-8") as f:
            dataset = json.load(f)

            if "Questions" in dataset:
                for data in dataset["Questions"]:
                    id_ = data["Question-ID"]
                    parses = []

                    for item in data["Parses"]:
                        answers = [answer for answer in item["Answers"]]

                        parses.append(
                            {
                                "Parse-Id": item["Parse-Id"],
                                "PotentialTopicEntityMention": item["PotentialTopicEntityMention"],
                                "TopicEntityName": item["TopicEntityName"],
                                "TopicEntityMid": item["TopicEntityMid"],
                                "InferentialChain": item["InferentialChain"],
                                "Answers": answers,
                            },
                        )

                    question = {
                        "Question-ID": data["Question-ID"],
                        "RawQuestion": data["RawQuestion"],
                        "ProcessedQuestion": data["ProcessedQuestion"],
                        "Parses": parses,
                    }

                    yield id_, question