Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
Korean
Size:
10K - 100K
ArXiv:
License:
Update files from the datasets library (from 1.8.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.8.0
- dataset_infos.json +1 -1
- squad_kor_v1.py +6 -0
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"squad_kor_v1": {"description": "KorQuAD 1.0 is a large-scale Korean dataset for machine reading comprehension task consisting of human generated questions for Wikipedia articles. We benchmark the data collecting process of SQuADv1.0 and crowdsourced 70,000+ question-answer pairs. 1,637 articles and 70,079 pairs of question answers were collected. 1,420 articles are used for the training set, 140 for the dev set, and 77 for the test set. 60,407 question-answer pairs are for the training set, 5,774 for the dev set, and 3,898 for the test set.\n", "citation": "@article{lim2019korquad1,\n title={Korquad1. 0: Korean qa dataset for machine reading comprehension},\n author={Lim, Seungyoung and Kim, Myungji and Lee, Jooyoul},\n journal={arXiv preprint arXiv:1909.07005},\n year={2019}\n}\n", "homepage": "https://korquad.github.io/KorQuad%201.0/", "license": "CC BY-ND 2.0 KR", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "squad_kor_v1", "config_name": "squad_kor_v1", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 83380337, "num_examples": 60407, "dataset_name": "squad_kor_v1"}, "validation": {"name": "validation", "num_bytes": 8261729, "num_examples": 5774, "dataset_name": "squad_kor_v1"}}, "download_checksums": {"https://korquad.github.io/dataset/KorQuAD_v1.0_train.json": {"num_bytes": 38527475, "checksum": "40d5115879a701751781df721d901abfa736d8db5f89000f2619433f39bf2dd2"}, "https://korquad.github.io/dataset/KorQuAD_v1.0_dev.json": {"num_bytes": 3881058, "checksum": "25ffeb51e6c51ec02c071b60a10188e10005c144110f0d876b26079d80a35bdf"}}, "download_size": 42408533, "post_processing_size": null, "dataset_size": 91642066, "size_in_bytes": 134050599}}
|
|
|
1 |
+
{"squad_kor_v1": {"description": "KorQuAD 1.0 is a large-scale Korean dataset for machine reading comprehension task consisting of human generated questions for Wikipedia articles. We benchmark the data collecting process of SQuADv1.0 and crowdsourced 70,000+ question-answer pairs. 1,637 articles and 70,079 pairs of question answers were collected. 1,420 articles are used for the training set, 140 for the dev set, and 77 for the test set. 60,407 question-answer pairs are for the training set, 5,774 for the dev set, and 3,898 for the test set.\n", "citation": "@article{lim2019korquad1,\n title={Korquad1. 0: Korean qa dataset for machine reading comprehension},\n author={Lim, Seungyoung and Kim, Myungji and Lee, Jooyoul},\n journal={arXiv preprint arXiv:1909.07005},\n year={2019}\n}\n", "homepage": "https://korquad.github.io/KorQuad%201.0/", "license": "CC BY-ND 2.0 KR", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "question-answering-extractive", "question_column": "question", "context_column": "context", "answers_column": "answers"}], "builder_name": "squad_kor_v1", "config_name": "squad_kor_v1", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 83380337, "num_examples": 60407, "dataset_name": "squad_kor_v1"}, "validation": {"name": "validation", "num_bytes": 8261729, "num_examples": 5774, "dataset_name": "squad_kor_v1"}}, "download_checksums": {"https://korquad.github.io/dataset/KorQuAD_v1.0_train.json": {"num_bytes": 38527475, "checksum": "40d5115879a701751781df721d901abfa736d8db5f89000f2619433f39bf2dd2"}, "https://korquad.github.io/dataset/KorQuAD_v1.0_dev.json": {"num_bytes": 3881058, "checksum": "25ffeb51e6c51ec02c071b60a10188e10005c144110f0d876b26079d80a35bdf"}}, "download_size": 42408533, "post_processing_size": null, "dataset_size": 91642066, "size_in_bytes": 134050599}}
|
squad_kor_v1.py
CHANGED
@@ -19,6 +19,7 @@
|
|
19 |
import json
|
20 |
|
21 |
import datasets
|
|
|
22 |
|
23 |
|
24 |
_CITATION = """\
|
@@ -76,6 +77,11 @@ class SquadKorV1(datasets.GeneratorBasedBuilder):
|
|
76 |
homepage=_HOMEPAGE,
|
77 |
license=_LICENSE,
|
78 |
citation=_CITATION,
|
|
|
|
|
|
|
|
|
|
|
79 |
)
|
80 |
|
81 |
def _split_generators(self, dl_manager):
|
|
|
19 |
import json
|
20 |
|
21 |
import datasets
|
22 |
+
from datasets.tasks import QuestionAnsweringExtractive
|
23 |
|
24 |
|
25 |
_CITATION = """\
|
|
|
77 |
homepage=_HOMEPAGE,
|
78 |
license=_LICENSE,
|
79 |
citation=_CITATION,
|
80 |
+
task_templates=[
|
81 |
+
QuestionAnsweringExtractive(
|
82 |
+
question_column="question", context_column="context", answers_column="answers"
|
83 |
+
)
|
84 |
+
],
|
85 |
)
|
86 |
|
87 |
def _split_generators(self, dl_manager):
|