pt-sk commited on
Commit
dbcd5a2
1 Parent(s): fe91008

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +409 -1
README.md CHANGED
@@ -1,3 +1,411 @@
1
  ---
2
- license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ language_creators:
5
+ - crowdsourced
6
+ language:
7
+ - en
8
+ license:
9
+ - unknown
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 10K<n<100K
14
+ source_datasets:
15
+ - extended|other-foodspotting
16
+ task_categories:
17
+ - image-classification
18
+ task_ids:
19
+ - multi-class-image-classification
20
+ paperswithcode_id: food-101
21
+ pretty_name: Food-101
22
+ dataset_info:
23
+ features:
24
+ - name: image
25
+ dtype: image
26
+ - name: label
27
+ dtype:
28
+ class_label:
29
+ names:
30
+ '0': apple_pie
31
+ '1': baby_back_ribs
32
+ '2': baklava
33
+ '3': beef_carpaccio
34
+ '4': beef_tartare
35
+ '5': beet_salad
36
+ '6': beignets
37
+ '7': bibimbap
38
+ '8': bread_pudding
39
+ '9': breakfast_burrito
40
+ '10': bruschetta
41
+ '11': caesar_salad
42
+ '12': cannoli
43
+ '13': caprese_salad
44
+ '14': carrot_cake
45
+ '15': ceviche
46
+ '16': cheesecake
47
+ '17': cheese_plate
48
+ '18': chicken_curry
49
+ '19': chicken_quesadilla
50
+ '20': chicken_wings
51
+ '21': chocolate_cake
52
+ '22': chocolate_mousse
53
+ '23': churros
54
+ '24': clam_chowder
55
+ '25': club_sandwich
56
+ '26': crab_cakes
57
+ '27': creme_brulee
58
+ '28': croque_madame
59
+ '29': cup_cakes
60
+ '30': deviled_eggs
61
+ '31': donuts
62
+ '32': dumplings
63
+ '33': edamame
64
+ '34': eggs_benedict
65
+ '35': escargots
66
+ '36': falafel
67
+ '37': filet_mignon
68
+ '38': fish_and_chips
69
+ '39': foie_gras
70
+ '40': french_fries
71
+ '41': french_onion_soup
72
+ '42': french_toast
73
+ '43': fried_calamari
74
+ '44': fried_rice
75
+ '45': frozen_yogurt
76
+ '46': garlic_bread
77
+ '47': gnocchi
78
+ '48': greek_salad
79
+ '49': grilled_cheese_sandwich
80
+ '50': grilled_salmon
81
+ '51': guacamole
82
+ '52': gyoza
83
+ '53': hamburger
84
+ '54': hot_and_sour_soup
85
+ '55': hot_dog
86
+ '56': huevos_rancheros
87
+ '57': hummus
88
+ '58': ice_cream
89
+ '59': lasagna
90
+ '60': lobster_bisque
91
+ '61': lobster_roll_sandwich
92
+ '62': macaroni_and_cheese
93
+ '63': macarons
94
+ '64': miso_soup
95
+ '65': mussels
96
+ '66': nachos
97
+ '67': omelette
98
+ '68': onion_rings
99
+ '69': oysters
100
+ '70': pad_thai
101
+ '71': paella
102
+ '72': pancakes
103
+ '73': panna_cotta
104
+ '74': peking_duck
105
+ '75': pho
106
+ '76': pizza
107
+ '77': pork_chop
108
+ '78': poutine
109
+ '79': prime_rib
110
+ '80': pulled_pork_sandwich
111
+ '81': ramen
112
+ '82': ravioli
113
+ '83': red_velvet_cake
114
+ '84': risotto
115
+ '85': samosa
116
+ '86': sashimi
117
+ '87': scallops
118
+ '88': seaweed_salad
119
+ '89': shrimp_and_grits
120
+ '90': spaghetti_bolognese
121
+ '91': spaghetti_carbonara
122
+ '92': spring_rolls
123
+ '93': steak
124
+ '94': strawberry_shortcake
125
+ '95': sushi
126
+ '96': tacos
127
+ '97': takoyaki
128
+ '98': tiramisu
129
+ '99': tuna_tartare
130
+ '100': waffles
131
+ splits:
132
+ - name: train
133
+ num_bytes: 3842657187.0
134
+ num_examples: 75750
135
+ - name: validation
136
+ num_bytes: 1275182340.5
137
+ num_examples: 25250
138
+ download_size: 5059972308
139
+ dataset_size: 5117839527.5
140
+ configs:
141
+ - config_name: default
142
+ data_files:
143
+ - split: train
144
+ path: data/train-*
145
+ - split: validation
146
+ path: data/validation-*
147
  ---
148
+
149
+ # Dataset Card for Food-101
150
+
151
+ ## Table of Contents
152
+ - [Table of Contents](#table-of-contents)
153
+ - [Dataset Description](#dataset-description)
154
+ - [Dataset Summary](#dataset-summary)
155
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
156
+ - [Languages](#languages)
157
+ - [Dataset Structure](#dataset-structure)
158
+ - [Data Instances](#data-instances)
159
+ - [Data Fields](#data-fields)
160
+ - [Data Splits](#data-splits)
161
+ - [Dataset Creation](#dataset-creation)
162
+ - [Curation Rationale](#curation-rationale)
163
+ - [Source Data](#source-data)
164
+ - [Annotations](#annotations)
165
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
166
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
167
+ - [Social Impact of Dataset](#social-impact-of-dataset)
168
+ - [Discussion of Biases](#discussion-of-biases)
169
+ - [Other Known Limitations](#other-known-limitations)
170
+ - [Additional Information](#additional-information)
171
+ - [Dataset Curators](#dataset-curators)
172
+ - [Licensing Information](#licensing-information)
173
+ - [Citation Information](#citation-information)
174
+ - [Contributions](#contributions)
175
+
176
+ ## Dataset Description
177
+
178
+ - **Homepage:** [Food-101 Dataset](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/)
179
+ - **Repository:**
180
+ - **Paper:** [Paper](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/static/bossard_eccv14_food-101.pdf)
181
+ - **Leaderboard:**
182
+ - **Point of Contact:**
183
+
184
+ ### Dataset Summary
185
+
186
+ This dataset consists of 101 food categories, with 101'000 images. For each class, 250 manually reviewed test images are provided as well as 750 training images. On purpose, the training images were not cleaned, and thus still contain some amount of noise. This comes mostly in the form of intense colors and sometimes wrong labels. All images were rescaled to have a maximum side length of 512 pixels.
187
+
188
+ ### Supported Tasks and Leaderboards
189
+
190
+ - `image-classification`: The goal of this task is to classify a given image of a dish into one of 101 classes. The leaderboard is available [here](https://paperswithcode.com/sota/fine-grained-image-classification-on-food-101).
191
+
192
+ ### Languages
193
+
194
+ English
195
+
196
+ ## Dataset Structure
197
+
198
+ ### Data Instances
199
+
200
+ A sample from the training set is provided below:
201
+
202
+ ```
203
+ {
204
+ 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=384x512 at 0x276021C5EB8>,
205
+ 'label': 23
206
+ }
207
+ ```
208
+
209
+ ### Data Fields
210
+
211
+ The data instances have the following fields:
212
+
213
+ - `image`: A `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`.
214
+ - `label`: an `int` classification label.
215
+
216
+ <details>
217
+ <summary>Class Label Mappings</summary>
218
+
219
+ ```json
220
+ {
221
+ "apple_pie": 0,
222
+ "baby_back_ribs": 1,
223
+ "baklava": 2,
224
+ "beef_carpaccio": 3,
225
+ "beef_tartare": 4,
226
+ "beet_salad": 5,
227
+ "beignets": 6,
228
+ "bibimbap": 7,
229
+ "bread_pudding": 8,
230
+ "breakfast_burrito": 9,
231
+ "bruschetta": 10,
232
+ "caesar_salad": 11,
233
+ "cannoli": 12,
234
+ "caprese_salad": 13,
235
+ "carrot_cake": 14,
236
+ "ceviche": 15,
237
+ "cheesecake": 16,
238
+ "cheese_plate": 17,
239
+ "chicken_curry": 18,
240
+ "chicken_quesadilla": 19,
241
+ "chicken_wings": 20,
242
+ "chocolate_cake": 21,
243
+ "chocolate_mousse": 22,
244
+ "churros": 23,
245
+ "clam_chowder": 24,
246
+ "club_sandwich": 25,
247
+ "crab_cakes": 26,
248
+ "creme_brulee": 27,
249
+ "croque_madame": 28,
250
+ "cup_cakes": 29,
251
+ "deviled_eggs": 30,
252
+ "donuts": 31,
253
+ "dumplings": 32,
254
+ "edamame": 33,
255
+ "eggs_benedict": 34,
256
+ "escargots": 35,
257
+ "falafel": 36,
258
+ "filet_mignon": 37,
259
+ "fish_and_chips": 38,
260
+ "foie_gras": 39,
261
+ "french_fries": 40,
262
+ "french_onion_soup": 41,
263
+ "french_toast": 42,
264
+ "fried_calamari": 43,
265
+ "fried_rice": 44,
266
+ "frozen_yogurt": 45,
267
+ "garlic_bread": 46,
268
+ "gnocchi": 47,
269
+ "greek_salad": 48,
270
+ "grilled_cheese_sandwich": 49,
271
+ "grilled_salmon": 50,
272
+ "guacamole": 51,
273
+ "gyoza": 52,
274
+ "hamburger": 53,
275
+ "hot_and_sour_soup": 54,
276
+ "hot_dog": 55,
277
+ "huevos_rancheros": 56,
278
+ "hummus": 57,
279
+ "ice_cream": 58,
280
+ "lasagna": 59,
281
+ "lobster_bisque": 60,
282
+ "lobster_roll_sandwich": 61,
283
+ "macaroni_and_cheese": 62,
284
+ "macarons": 63,
285
+ "miso_soup": 64,
286
+ "mussels": 65,
287
+ "nachos": 66,
288
+ "omelette": 67,
289
+ "onion_rings": 68,
290
+ "oysters": 69,
291
+ "pad_thai": 70,
292
+ "paella": 71,
293
+ "pancakes": 72,
294
+ "panna_cotta": 73,
295
+ "peking_duck": 74,
296
+ "pho": 75,
297
+ "pizza": 76,
298
+ "pork_chop": 77,
299
+ "poutine": 78,
300
+ "prime_rib": 79,
301
+ "pulled_pork_sandwich": 80,
302
+ "ramen": 81,
303
+ "ravioli": 82,
304
+ "red_velvet_cake": 83,
305
+ "risotto": 84,
306
+ "samosa": 85,
307
+ "sashimi": 86,
308
+ "scallops": 87,
309
+ "seaweed_salad": 88,
310
+ "shrimp_and_grits": 89,
311
+ "spaghetti_bolognese": 90,
312
+ "spaghetti_carbonara": 91,
313
+ "spring_rolls": 92,
314
+ "steak": 93,
315
+ "strawberry_shortcake": 94,
316
+ "sushi": 95,
317
+ "tacos": 96,
318
+ "takoyaki": 97,
319
+ "tiramisu": 98,
320
+ "tuna_tartare": 99,
321
+ "waffles": 100
322
+ }
323
+ ```
324
+ </details>
325
+
326
+
327
+ ### Data Splits
328
+
329
+
330
+ | |train|validation|
331
+ |----------|----:|---------:|
332
+ |# of examples|75750|25250|
333
+
334
+
335
+ ## Dataset Creation
336
+
337
+ ### Curation Rationale
338
+
339
+ [More Information Needed]
340
+
341
+ ### Source Data
342
+
343
+ #### Initial Data Collection and Normalization
344
+
345
+ [More Information Needed]
346
+
347
+ #### Who are the source language producers?
348
+
349
+ [More Information Needed]
350
+
351
+ ### Annotations
352
+
353
+ #### Annotation process
354
+
355
+ [More Information Needed]
356
+
357
+ #### Who are the annotators?
358
+
359
+ [More Information Needed]
360
+
361
+ ### Personal and Sensitive Information
362
+
363
+ [More Information Needed]
364
+
365
+ ## Considerations for Using the Data
366
+
367
+ ### Social Impact of Dataset
368
+
369
+ [More Information Needed]
370
+
371
+ ### Discussion of Biases
372
+
373
+ [More Information Needed]
374
+
375
+ ### Other Known Limitations
376
+
377
+ [More Information Needed]
378
+
379
+ ## Additional Information
380
+
381
+ ### Dataset Curators
382
+
383
+ [More Information Needed]
384
+
385
+ ### Licensing Information
386
+
387
+ LICENSE AGREEMENT
388
+ =================
389
+ - The Food-101 data set consists of images from Foodspotting [1] which are not
390
+ property of the Federal Institute of Technology Zurich (ETHZ). Any use beyond
391
+ scientific fair use must be negociated with the respective picture owners
392
+ according to the Foodspotting terms of use [2].
393
+
394
+ [1] http://www.foodspotting.com/
395
+ [2] http://www.foodspotting.com/terms/
396
+
397
+
398
+ ### Citation Information
399
+
400
+ ```
401
+ @inproceedings{bossard14,
402
+ title = {Food-101 -- Mining Discriminative Components with Random Forests},
403
+ author = {Bossard, Lukas and Guillaumin, Matthieu and Van Gool, Luc},
404
+ booktitle = {European Conference on Computer Vision},
405
+ year = {2014}
406
+ }
407
+ ```
408
+
409
+ ### Contributions
410
+
411
+ Thanks to [@nateraw](https://github.com/nateraw) for adding this dataset.