Datasets:

Modalities:
Image
Video
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
File size: 5,732 Bytes
ce33d81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Copyright 2024 Xiao Fu, CUHK, Kuaishou Tech. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# More information about the method can be found at http://fuxiao0719.github.io/projects/3dtrajmaster
# --------------------------------------------------------------------------
import os
import numpy as np
from io import BytesIO
import imageio.v2 as imageio
import open3d
import math
from tools.vis_cam import get_camera_frustum, frustums2lineset
import trimesh

def parse_matrix(matrix_str):
    rows = matrix_str.strip().split('] [')
    matrix = []
    for row in rows:
        row = row.replace('[', '').replace(']', '')
        matrix.append(list(map(float, row.split())))
    return np.array(matrix)

def load_sceneposes(objs_file, obj_idx, obj_transl):
    ext_poses = []
    for i, key in enumerate(objs_file.keys()):
        ext_poses.append(parse_matrix(objs_file[key][obj_idx]['matrix']))
    ext_poses = np.stack(ext_poses)
    ext_poses = np.transpose(ext_poses, (0,2,1))
    ext_poses[:,:3,3] -= obj_transl
    ext_poses[:,:3,3] /= 100.
    ext_poses = ext_poses[:, :, [1,2,0,3]]
    return ext_poses

def save_images2video(images, video_name, fps):
    fps = fps
    format = "mp4"  
    codec = "libx264"  
    ffmpeg_params = ["-crf", str(12)]
    pixelformat = "yuv420p" 
    video_stream = BytesIO()

    with imageio.get_writer(
        video_stream,
        fps=fps,
        format=format,
        codec=codec,
        ffmpeg_params=ffmpeg_params,
        pixelformat=pixelformat,
    ) as writer:
        for idx in range(len(images)):
            writer.append_data(images[idx])

    video_data = video_stream.getvalue()

    output_path = os.path.join(video_name + ".mp4")
    with open(output_path, "wb") as f:
        f.write(video_data)

def normalize(x):
    return x / np.linalg.norm(x)

def viewmatrix(z, up, pos):
    vec2 = normalize(z)
    vec1_avg = up
    vec0 = normalize(np.cross(vec1_avg, vec2))
    vec1 = normalize(np.cross(vec2, vec0))
    m = np.stack([vec0, vec1, vec2, pos], 1)
    return m

def matrix_to_euler_angles(matrix):
    sy = math.sqrt(matrix[0][0] * matrix[0][0] + matrix[1][0] * matrix[1][0])
    singular = sy < 1e-6

    if not singular:
        x = math.atan2(matrix[2][1], matrix[2][2])
        y = math.atan2(-matrix[2][0], sy)
        z = math.atan2(matrix[1][0], matrix[0][0])
    else:
        x = math.atan2(-matrix[1][2], matrix[1][1])
        y = math.atan2(-matrix[2][0], sy)
        z = 0

    return math.degrees(x), math.degrees(y), math.degrees(z)

def eul2rot(theta) :

    R = np.array([[np.cos(theta[1])*np.cos(theta[2]),       np.sin(theta[0])*np.sin(theta[1])*np.cos(theta[2]) - np.sin(theta[2])*np.cos(theta[0]),      np.sin(theta[1])*np.cos(theta[0])*np.cos(theta[2]) + np.sin(theta[0])*np.sin(theta[2])],
                  [np.sin(theta[2])*np.cos(theta[1]),       np.sin(theta[0])*np.sin(theta[1])*np.sin(theta[2]) + np.cos(theta[0])*np.cos(theta[2]),      np.sin(theta[1])*np.sin(theta[2])*np.cos(theta[0]) - np.sin(theta[0])*np.cos(theta[2])],
                  [-np.sin(theta[1]),                        np.sin(theta[0])*np.cos(theta[1]),                                                           np.cos(theta[0])*np.cos(theta[1])]])

    return R.T

def extract_location_rotation(data):
    results = {}
    for key, value in data.items():
        matrix = parse_matrix(value)
        location = np.array([matrix[3][0], matrix[3][1], matrix[3][2]])
        rotation = eul2rot(matrix_to_euler_angles(matrix))
        transofmed_matrix = np.identity(4)
        transofmed_matrix[:3,3] = location
        transofmed_matrix[:3,:3] = rotation
        results[key] = transofmed_matrix
    return results

def get_cam_points_vis(W, H, intrinsics, ext_pose, color,frustum_length):
    cam = get_camera_frustum((W, H), intrinsics, np.linalg.inv(ext_pose), frustum_length=frustum_length,  color=[0., 0., 1.])
    cam_points = cam[0]
    for item in cam[1]:
        cam_points = np.concatenate((cam_points, np.linspace(cam[0][item[0]], cam[0][item[1]], num=1000, endpoint=True, retstep=False, dtype=None)))
    cam_points[:,0]*=-1
    cam_points = trimesh.points.PointCloud(vertices = cam_points, colors=[0, 255, 0, 255])
    cam_points_vis = open3d.geometry.PointCloud()
    cam_points_vis.points = open3d.utility.Vector3dVector(cam_points)
    cam_points_vis.paint_uniform_color(color)
    return cam_points_vis

def batch_axis_angle_to_rotation_matrix(r_batch):
    batch_size = r_batch.shape[0]
    rotation_matrices = []
    
    for i in range(batch_size):
        r = r_batch[i]
        theta = np.linalg.norm(r)
        if theta == 0:
            rotation_matrices.append(np.eye(3))
        else:
            k = r / theta 
            kx, ky, kz = k
            
            K = np.array([
                [0, -kz, ky],
                [kz, 0, -kx],
                [-ky, kx, 0]
            ])
            
            R = np.eye(3) + np.sin(theta) * K + (1 - np.cos(theta)) * np.dot(K, K)
            rotation_matrices.append(R)
    
    return np.array(rotation_matrices)