Datasets:

Modalities:
Image
Video
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
File size: 6,322 Bytes
ce33d81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a50a70d
ce33d81
 
 
 
 
 
 
 
 
 
 
 
 
 
a50a70d
ce33d81
 
 
 
 
 
 
 
 
a50a70d
ce33d81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a50a70d
ce33d81
a50a70d
ce33d81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a50a70d
ce33d81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright 2024 Xiao Fu, CUHK, Kuaishou Tech. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# More information about the method can be found at http://fuxiao0719.github.io/projects/3dtrajmaster
# --------------------------------------------------------------------------

import os
import numpy as np
import json
import torch
import random
import cv2
import decord
from einops import rearrange
from utils import *

# --------------------------------------------------------------------------
# 1. Load scenes infomation
# --------------------------------------------------------------------------
dataset_root = 'root_path/360Motion-Dataset'
video_res = '480_720'
video_names = []
scenes = ['Desert', 'HDRI']
scene_location_pair = {
    'Desert' : 'desert',
    'HDRI' : 
    {
        'loc1' : 'snowy street',
        'loc2' : 'park',
        'loc3' : 'indoor open space',
        'loc11' : 'gymnastics room',
        'loc13' : 'autumn forest',
    }
}
for scene in scenes:
    video_path = os.path.join(dataset_root, video_res, scene)
    locations_path = os.path.join(video_path, "location_data.json")
    with open(locations_path, 'r') as f: locations = json.load(f)
    locations_info = {locations[idx]['name']:locations[idx] for idx in range(len(locations))}
    for video_name in os.listdir(video_path):
        if video_name.endswith('Hemi12_1') == True:
            if scene != 'HDRI':
                location = scene_location_pair[scene]
            else:
                location = scene_location_pair['HDRI'][video_name.split('_')[1]]
            video_names.append((video_res, scene, video_name, location, locations_info))

# --------------------------------------------------------------------------
# 2. Load 12 surrounding cameras
# --------------------------------------------------------------------------
cam_num = 12
max_objs_num = 3
length = len(video_names)
captions_path = os.path.join(dataset_root, "CharacterInfo.json")
with open(captions_path, 'r') as f: captions = json.load(f)['CharacterInfo']
captions_info = {int(captions[idx]['index']):captions[idx]['eng'] for idx in range(len(captions))}
cams_path = os.path.join(dataset_root, "Hemi12_transforms.json")
with open(cams_path, 'r') as f: cams_info = json.load(f)
cam_poses = []
for i, key in enumerate(cams_info.keys()):
    if "C_" in key:
        cam_poses.append(parse_matrix(cams_info[key]))
cam_poses = np.stack(cam_poses)
cam_poses = np.transpose(cam_poses, (0,2,1))
cam_poses = cam_poses[:,:,[1,2,0,3]]
cam_poses[:,:3,3] /= 100.
cam_poses = cam_poses
sample_n_frames = 49

# --------------------------------------------------------------------------
# 3. Load a sample of video & object poses
# --------------------------------------------------------------------------
(video_res, scene, video_name, location, locations_info) = video_names[20]

with open(os.path.join(dataset_root, video_res, scene, video_name, video_name+'.json'), 'r') as f: objs_file = json.load(f)
objs_num = len(objs_file['0'])
video_index = random.randint(1, cam_num-1)

location_name = video_name.split('_')[1]
location_info = locations_info[location_name]
cam_pose = cam_poses[video_index-1]
obj_transl = location_info['coordinates']['CameraTarget']['position']

prompt = ''
video_caption_list = []
obj_poses_list = []

for obj_idx in range(objs_num):

    obj_name_index = objs_file['0'][obj_idx]['index'] 
    video_caption = captions_info[obj_name_index]

    if video_caption.startswith(" "):
        video_caption = video_caption[1:]
    if video_caption.endswith("."):
        video_caption = video_caption[:-1]
    video_caption = video_caption.lower()
    video_caption_list.append(video_caption)
    
    obj_poses = load_sceneposes(objs_file, obj_idx, obj_transl)
    obj_poses = np.linalg.inv(cam_pose) @ obj_poses
    obj_poses_list.append(obj_poses)

for obj_idx in range(objs_num):
    video_caption = video_caption_list[obj_idx]
    if obj_idx == objs_num - 1:
        if objs_num == 1:
            prompt += video_caption + ' is moving in the ' + location
        else:
            prompt += video_caption + ' are moving in the ' + location
    else:
        prompt += video_caption + ' and '

obj_poses_all = torch.from_numpy(np.array(obj_poses_list))

total_frames = 99
current_sample_stride = 1.75
cropped_length = int(sample_n_frames * current_sample_stride)
start_frame_ind = random.randint(10, max(10, total_frames - cropped_length - 1))
end_frame_ind = min(start_frame_ind + cropped_length, total_frames)
frame_indices = np.linspace(start_frame_ind, end_frame_ind - 1, sample_n_frames, dtype=int)

video_frames_path = os.path.join(dataset_root, video_res, scene, video_name, 'videos', video_name+ f'_C_{video_index:02d}_35mm.mp4')
cap = cv2.VideoCapture(video_frames_path)
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))

# get local rank
ctx = decord.cpu(0)
reader = decord.VideoReader(video_frames_path, ctx=ctx, height=height, width=width)
assert len(reader) == total_frames or len(reader) == total_frames+1
frame_indexes = [frame_idx for frame_idx in range(total_frames)]
try:
    video_chunk = reader.get_batch(frame_indexes).asnumpy()    
except:
    video_chunk = reader.get_batch(frame_indexes).numpy()

pixel_values = np.array([video_chunk[indice] for indice in frame_indices])
pixel_values = rearrange(torch.from_numpy(pixel_values) / 255.0, "f h w c -> f c h w")

save_video = True
if save_video:
    video_data = (pixel_values.cpu().to(torch.float32).numpy() * 255).astype(np.uint8)
    video_data = rearrange(video_data, "f c h w -> f h w c")
    save_images2video(video_data, video_name, 12)