# Copyright 2024 Xiao Fu, CUHK, Kuaishou Tech. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -------------------------------------------------------------------------- # If you find this code useful, we kindly ask you to cite our paper in your work. # More information about the method can be found at http://fuxiao0719.github.io/projects/3dtrajmaster # -------------------------------------------------------------------------- import os import numpy as np import json import torch import random import cv2 import decord from einops import rearrange from utils import * # -------------------------------------------------------------------------- # 1. Load scenes infomation # -------------------------------------------------------------------------- dataset_root = 'root_path/360Motion-Dataset' video_names = [] scenes = ['Desert', 'HDRI'] scene_location_pair = { 'Desert' : 'desert', 'HDRI' : { 'loc1' : 'snowy street', 'loc2' : 'park', 'loc3' : 'indoor open space', 'loc11' : 'gymnastics room', 'loc13' : 'autumn forest', } } for scene in scenes: video_path = os.path.join(dataset_root, scene) locations_path = os.path.join(video_path, "location_data.json") with open(locations_path, 'r') as f: locations = json.load(f) locations_info = {locations[idx]['name']:locations[idx] for idx in range(len(locations))} for video_name in os.listdir(video_path): if video_name.endswith('Hemi12_1') == True: if scene != 'HDRI': location = scene_location_pair[scene] else: location = scene_location_pair['HDRI'][video_name.split('_')[1]] video_names.append((scene, video_name, location, locations_info)) # -------------------------------------------------------------------------- # 2. Load 12 surrounding cameras # -------------------------------------------------------------------------- cam_num = 12 max_objs_num = 3 length = len(video_names) captions_path = os.path.join(dataset_root, "CharacterInfo.json") with open(captions_path, 'r') as f: captions = json.load(f)['CharacterInfo'] captions_info = {int(captions[idx]['index']):captions[idx]['eng'] for idx in range(len(captions))} cams_path = os.path.join(dataset_root, "Hemi12_transforms.json") with open(cams_path, 'r') as f: cams_info = json.load(f) cam_poses = [] for i, key in enumerate(cams_info.keys()): if "C_" in key: cam_poses.append(parse_matrix(cams_info[key])) cam_poses = np.stack(cam_poses) cam_poses = np.transpose(cam_poses, (0,2,1)) cam_poses = cam_poses[:,:,[1,2,0,3]] cam_poses[:,:3,3] /= 100. cam_poses = cam_poses sample_n_frames = 49 # -------------------------------------------------------------------------- # 3. Load a sample of video & object poses # -------------------------------------------------------------------------- (scene, video_name, location, locations_info) = video_names[20] with open(os.path.join(dataset_root, scene, video_name, video_name+'.json'), 'r') as f: objs_file = json.load(f) objs_num = len(objs_file['0']) video_index = random.randint(1, cam_num-1) location_name = video_name.split('_')[1] location_info = locations_info[location_name] cam_pose = cam_poses[video_index-1] obj_transl = location_info['coordinates']['CameraTarget']['position'] prompt = '' video_caption_list = [] obj_poses_list = [] for obj_idx in range(objs_num): obj_name_index = objs_file['0'][obj_idx]['index'] video_caption = captions_info[obj_name_index] if video_caption.startswith(" "): video_caption = video_caption[1:] if video_caption.endswith("."): video_caption = video_caption[:-1] video_caption = video_caption.lower() video_caption_list.append(video_caption) obj_poses = load_sceneposes(objs_file, obj_idx, obj_transl) obj_poses = np.linalg.inv(cam_pose) @ obj_poses obj_poses_list.append(obj_poses) for obj_idx in range(objs_num): video_caption = video_caption_list[obj_idx] if obj_idx == objs_num - 1: if objs_num == 1: prompt += video_caption + ' is moving in the ' + location else: prompt += video_caption + ' are moving in the ' + location else: prompt += video_caption + ' and ' obj_poses_all = torch.from_numpy(np.array(obj_poses_list)) total_frames = 99 current_sample_stride = 1.75 cropped_length = int(sample_n_frames * current_sample_stride) start_frame_ind = random.randint(10, max(10, total_frames - cropped_length - 1)) end_frame_ind = min(start_frame_ind + cropped_length, total_frames) frame_indices = np.linspace(start_frame_ind, end_frame_ind - 1, sample_n_frames, dtype=int) video_frames_path = os.path.join(dataset_root, scene, video_name, 'videos', video_name+ f'_C_{video_index:02d}_35mm.mp4') cap = cv2.VideoCapture(video_frames_path) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) # get local rank ctx = decord.cpu(0) reader = decord.VideoReader(video_frames_path, ctx=ctx, height=height, width=width) assert len(reader) == total_frames or len(reader) == total_frames+1 frame_indexes = [frame_idx for frame_idx in range(total_frames)] try: video_chunk = reader.get_batch(frame_indexes).asnumpy() except: video_chunk = reader.get_batch(frame_indexes).numpy() pixel_values = np.array([video_chunk[indice] for indice in frame_indices]) pixel_values = rearrange(torch.from_numpy(pixel_values) / 255.0, "f h w c -> f c h w") save_video = True if save_video: video_data = (pixel_values.cpu().to(torch.float32).numpy() * 255).astype(np.uint8) video_data = rearrange(video_data, "f c h w -> f h w c") save_images2video(video_data, video_name, 12)