TeX
stringlengths 1
269k
⌀ |
---|
c^{\prime}_{i}=c_{j} |
\mathcal{W}^{*}(E^{(v_{1},u_{5})})=w^{*}_{1}+w^{*}_{2} |
|w_{1}+w^{*}+w_{2}+w^{*}-w_{1}-w_{2}|=2w^{*} |
e_{i}\in E_{m},1\leq i\leq k |
|w^{*}| |
P^{{}^{\prime}}\subseteq P |
P^{\prime}\subseteq P |
k-i |
c_{1}+c_{2}>1 |
c_{j}>0 |
e_{1},e_{2} |
\displaystyle\pi^{\prime\prime}_{v_{i},u_{j}} |
n_{R}(|y-C|+|y-B-C|) |
\operatorname{min}(\mathcal{E}(M_{R}^{*}),\mathcal{E}(M_{L}^{*}))=\mathcal{E}(%
M_{L}^{*}) |
i\xleftarrow{}i |
\displaystyle\leq |
\mathcal{E}_{L}=n_{L}\times\big{(}\underbrace{|x-w_{0}|}_{\text{between the %
vertices of }V_{L}\text{ and }v_{2}}+\underbrace{|x-w_{0}-w_{1}|}_{\text{%
between the vertices of }V_{L}\text{ and }v_{3}}+\dots+\underbrace{|x-w_{0}-w_%
{1}-\dots-w_{k}|}_{\text{between the vertices of }V_{L}\text{ and }v_{k+2}}%
\big{)} |
{n^{2}_{L}}\times{\mathcal{L}}({\mathcal{L}}-1)\leq{n^{2}_{R}}\times{\mathcal{%
R}}({\mathcal{R}}-1) |
M_{L}^{*} |
{n_{L}}\times{n_{L}}\times 2w^{*} |
M^{\prime\prime} |
f\in\mathcal{F}=\{{\text{MARK\_LEFT}},{\text{UNMARK\_LEFT}},{\text{MARK\_RIGHT%
}},{\text{UNMARK\_RIGHT}}\} |
7-21\leq 2=L_{2} |
\displaystyle n_{L}\times\big{(}\sum_{j=0}^{i}j\;w_{j}+\sum_{j=i+1}^{k}(k+1-j)%
\;w_{j}+(i+1)\;w_{i+1}-(k-i)\;w_{i+1}\big{)} |
x=w_{0}+w_{1}+\dots+w_{i} |
x>w_{0}+\dots+w_{k} |
L_{1}\times L_{2}\times w^{*} |
e_{2}=(v_{1},v_{4}) |
e_{1} |
H |
S_{L}-L_{i}-S_{R}\leq 0\xrightarrow[]{}S_{L}-S_{R}\leq L_{i} |
j>\frac{{\mathcal{R}}}{2}+\frac{{n_{L}}(1-{\mathcal{L}})}{2{n_{R}}} |
\mathcal{E}(M)=\mathcal{E}(M^{\prime})+\Delta_{1}({\text{MARK\_LEFT}}) |
w_{i} |
u,v |
v_{5} |
n_{2}=n_{R} |
u\in G_{2} |
e_{i}\in E |
\frac{\mathcal{E}^{(\frac{k}{2})}_{L}}{n_{L}} |
\alpha_{2} |
w(e^{\prime})\xleftarrow[]{}w(e^{\prime})+w(e) |
V_{L}=\{v_{i}|1\leq i\leq n_{1}+1\} |
\mathcal{E}_{L}^{(i)}=n_{L}\times\big{(}\sum_{j=0}^{i}j\;w_{j}+\sum_{j=i+1}^{k%
}(k+1-j)\;w_{j}\big{)} |
n_{L}\times\big{(}(k-i)\;w_{i+1}\big{)} |
{T_{i}^{L}},i\in\{1,2\} |
\mathcal{W}^{\prime}(E^{\prime}) |
e^{\prime}\in E_{m} |
\displaystyle n_{L}\times n_{R}\times|x+y-A-B-C| |
M^{*}\xleftarrow[]{}\operatorname{argmin}(\mathcal{E}(M_{L}^{*}),\mathcal{E}(M%
_{R}^{*})) |
u,v\in G_{2} |
\Delta({\text{UNMARK\_LEFT}})=L_{i}\times\bigg{(}-(S_{LM}-L_{i})-S_{LU}-S_{RM}%
+S_{RU}\bigg{)} |
\mathcal{E}(M^{\prime\prime})<\mathcal{E}(M) |
L_{i}=n_{L},\;1\leq i\leq{\mathcal{L}} |
u\in G_{1} |
|w^{*}|-\left|\sum_{k=i}^{n_{1}}\epsilon_{k}\right|\leq\left|w^{*}-\sum_{k=i}^%
{n_{1}}\epsilon_{k}\right| |
\beta\geq 0 |
{T_{j}^{R}},j\in\{1,\dots,{\mathcal{R}}\} |
\Delta({\text{UNMARK\_LEFT}}) |
\displaystyle B\times k^{\prime}\times\underbrace{(n_{L}+n_{R})}_{=n-(k+k^{%
\prime})}=B\times k^{\prime}\times(n-(k+k^{\prime})) |
P^{\prime}\subset P |
0\leq i\leq k |
e_{i},e_{j} |
C\leq y\leq B+C |
c_{i}\neq c_{j} |
\alpha_{1}=B |
x-A-B |
\displaystyle\xrightarrow{\text{setting }x=A+B,y=C}= |
v\in V_{s} |
\mathcal{E}_{1} |
L_{1} |
X<0 |
V_{s} |
|w^{*}-(c_{2}\times w^{*}+c_{j}\times w^{*}-\epsilon\times w^{*})|-|w^{*}-(c_{%
2}\times w^{*}+c_{j}\times w^{*})|\leq\epsilon\times w^{*} |
e^{*}\in S |
c^{\prime}_{2}=c_{2}-\epsilon |
f\in\mathcal{F}=\{\text{MARK\_LEFT},\text{UNMARK\_RIGHT}\} |
S_{RM} |
|w_{1}+w^{*}+w_{3}+w^{*}-w_{1}-w^{*}-w_{3}|=w^{*} |
M_{L}^{*}\xleftarrow[]{}M_{L}^{*}\cup\{e_{i}\} |
\begin{array}[]{cc}\Delta_{1}({\text{UNMARK\_RIGHT}})\leq R_{1}\times\epsilon%
\times w^{*}\times\bigg{(}-S_{R}^{\prime}\underbrace{-L_{1}}_{<0}+S_{L}^{%
\prime}\bigg{)}&<R_{1}\times\epsilon\times w^{*}\times(\underbrace{-S_{R}^{%
\prime}+S_{L}^{\prime}}_{\leq 0})\leq 0\end{array} |
\mathcal{E}^{v_{i},u_{j}}_{1}=\left|\pi_{v_{i},u_{j}}-\pi^{\prime}_{v_{i},u_{j%
}}\right|=\left|\pi^{\prime}_{v_{i},u_{j}}-\pi_{v_{i},u_{j}}\right|=\left|%
\mathcal{W}^{\prime}(E^{(v_{i},u_{j})})-\mathcal{W}^{*}(E^{(v_{i},u_{j})})\right| |
\alpha_{1}=x-A+A+B-x<B\xrightarrow{}0<0 |
(u,v),\;\;u\in V_{m},\;v\in\overline{V_{m}} |
w_{1} |
|\Delta E|\geq B(n_{L}+n_{R})+n_{L}n_{R}|x+y-A-B-C| |
v^{\prime}_{1} |
\operatorname{d}_{G^{\prime}}(u,v)\geq\varphi\left(\operatorname{d}_{G}(u,v)\right) |
S\xleftarrow[]{}E_{m} |
\mathcal{E}^{v_{i},u_{j+1}}_{1}=\left|\pi_{v_{i},u_{j+1}}-\pi^{\prime}_{v_{i},%
u_{j+1}}\right|=\left|\pi_{v_{i},u_{j}}+w^{*}_{k}-\pi^{\prime}_{v_{i},u_{j}}%
\right|=\left|w^{*}_{k}+\mathcal{W}^{*}(E^{(v_{i},u_{j})})-\mathcal{W}^{\prime%
}(E^{(v_{i},u_{j})})\right| |
7-21\leq 3=L_{3} |
{n^{2}_{R}}\times 2\big{(}{j-1\choose 2}-{j\choose 2}\big{)}={n^{2}_{R}}\times%
(-2(j-1)) |
\mathcal{E}_{LR}=0 |
w^{\prime}(e_{i})=w(e_{i})+\epsilon_{i},\epsilon_{i}\in[0,w^{*}] |
\displaystyle+ |
i+1-k+i<0\xrightarrow[]{}2i<k-1\xrightarrow[]{}i<\frac{k}{2}-\frac{1}{2}%
\xrightarrow[\text{since }k\text{ is even}]{}i\leq\frac{k}{2}-1 |
|x-A| |
\alpha_{1} |
V_{m}=\{v_{2},v_{3}\} |
\Delta({\text{MARK\_LEFT}})={n^{2}_{L}}\times(2i+{\mathcal{L}}-2i-1)+{n_{L}}{n%
_{R}}(j+j-{\mathcal{R}})={n^{2}_{L}}\times({\mathcal{L}}-1)+{n_{L}}{n_{R}}(2j-%
{\mathcal{R}}) |