File size: 2,663 Bytes
6d0f897
 
 
 
 
408f3a5
 
 
6d0f897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a99e9f4
6d0f897
 
 
fc1f155
 
 
 
 
 
 
 
a99e9f4
 
 
 
 
fc1f155
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: cc-by-4.0
task_categories:
- translation
- text-generation
language:
- vmw
- pt
dataset_info:
  features:
  - name: filename
    dtype: string
  - name: img_pt
    dtype: image
  - name: img_vmw
    dtype: image
  - name: first_pass_pt_gv
    dtype: string
  - name: first_pass_pt_tesseract
    dtype: string
  - name: post_correction_pt
    dtype: string
  - name: first_pass_vmw_gv
    dtype: string
  - name: first_pass_vmw_tesseract
    dtype: string
  - name: post_correction_vmw
    dtype: string
  splits:
  - name: train
    num_bytes: 19780110.0
    num_examples: 369
  download_size: 19678096
  dataset_size: 19780110.0
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---


**BibTeX:**

The dataset paper was published in EMNLP 2024.

Please cite as:
```
@inproceedings{ali-etal-2024-building,
    title = "Building Resources for Emakhuwa: Machine Translation and News Classification Benchmarks",
    author = "Ali, Felermino D. M. A.  and
      Lopes Cardoso, Henrique  and
      Sousa-Silva, Rui",
    editor = "Al-Onaizan, Yaser  and
      Bansal, Mohit  and
      Chen, Yun-Nung",
    booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2024",
    address = "Miami, Florida, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.emnlp-main.824",
    pages = "14842--14857",
    abstract = "This paper introduces a comprehensive collection of NLP resources for Emakhuwa, Mozambique{'}s most widely spoken language. The resources include the first manually translated news bitext corpus between Portuguese and Emakhuwa, news topic classification datasets, and monolingual data. We detail the process and challenges of acquiring this data and present benchmark results for machine translation and news topic classification tasks. Our evaluation examines the impact of different data types{---}originally clean text, post-corrected OCR, and back-translated data{---}and the effects of fine-tuning from pre-trained models, including those focused on African languages.Our benchmarks demonstrate good performance in news topic classification and promising results in machine translation. We fine-tuned multilingual encoder-decoder models using real and synthetic data and evaluated them on our test set and the FLORES evaluation sets. The results highlight the importance of incorporating more data and potential for future improvements.All models, code, and datasets are available in the \url{https://huggingface.co/LIACC} repository under the CC BY 4.0 license.",
}
```