Commit
•
4ed3116
1
Parent(s):
4efcd6e
read .sph file only once per .stm file
Browse files- tedlium.py +99 -91
tedlium.py
CHANGED
@@ -16,35 +16,36 @@
|
|
16 |
|
17 |
import os
|
18 |
import re
|
19 |
-
|
20 |
|
|
|
|
|
21 |
|
22 |
import datasets
|
23 |
from datasets.tasks import AutomaticSpeechRecognition
|
24 |
|
25 |
-
from pydub import AudioSegment
|
26 |
|
27 |
_LICENSE = "licensed under Creative Commons BY-NC-ND 3.0 (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en)"
|
28 |
|
|
|
29 |
class TedliumReleaseConfig(datasets.BuilderConfig):
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
self.citation = citation
|
41 |
|
42 |
|
43 |
def _make_builder_configs():
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
The TED-LIUM corpus is English-language TED talks, with transcriptions,
|
49 |
sampled at 16kHz. It contains about 118 hours of speech.
|
50 |
|
@@ -52,7 +53,7 @@ def _make_builder_configs():
|
|
52 |
licensed under Creative Commons BY-NC-ND 3.0
|
53 |
(http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en).
|
54 |
""",
|
55 |
-
|
56 |
@inproceedings{rousseau2012tedlium,
|
57 |
title={TED-LIUM: an Automatic Speech Recognition dedicated corpus},
|
58 |
author={Rousseau, Anthony and Del{\\'e}glise, Paul and Est{\\`e}ve, Yannick},
|
@@ -61,17 +62,18 @@ def _make_builder_configs():
|
|
61 |
year={2012}
|
62 |
}
|
63 |
""",
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
75 |
This is the TED-LIUM corpus release 2,
|
76 |
licensed under Creative Commons BY-NC-ND 3.0
|
77 |
(http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en).
|
@@ -86,7 +88,7 @@ def _make_builder_configs():
|
|
86 |
|
87 |
Contains 1495 talks and transcripts.
|
88 |
""",
|
89 |
-
|
90 |
@inproceedings{rousseau2014tedlium2,
|
91 |
title={Enhancing the {TED-LIUM} Corpus with Selected Data for Language Modeling and More {TED} Talks},
|
92 |
author={Rousseau, Anthony and Del{\\'e}glise, Paul and Est{\\`e}ve, Yannick},
|
@@ -94,17 +96,18 @@ def _make_builder_configs():
|
|
94 |
year={2014}
|
95 |
}
|
96 |
""",
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
108 |
This is the TED-LIUM corpus release 3, licensed under Creative Commons
|
109 |
BY-NC-ND 3.0.
|
110 |
|
@@ -135,7 +138,7 @@ def _make_builder_configs():
|
|
135 |
- the 'speaker adaptation' one, especially designed for experiments on
|
136 |
speaker adaptation.
|
137 |
""",
|
138 |
-
|
139 |
@inproceedings{hernandez2018tedlium3,
|
140 |
title={TED-LIUM 3: twice as much data and corpus repartition for experiments on speaker adaptation},
|
141 |
author={Hernandez, Fran{\\c{c}}ois and Nguyen, Vincent and Ghannay, Sahar and Tomashenko, Natalia and Est{\\`e}ve, Yannick},
|
@@ -145,43 +148,39 @@ def _make_builder_configs():
|
|
145 |
organization={Springer}
|
146 |
}
|
147 |
""",
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
return [release1, release2, release3]
|
162 |
|
163 |
|
164 |
class TedLium(datasets.GeneratorBasedBuilder):
|
165 |
-
"""
|
166 |
|
167 |
VERSION = datasets.Version("1.1.0")
|
168 |
|
169 |
BUILDER_CONFIGS = _make_builder_configs()
|
170 |
|
171 |
def _info(self):
|
172 |
-
features = datasets.Features(
|
173 |
-
|
174 |
-
|
175 |
-
"text":
|
176 |
-
|
177 |
-
"
|
178 |
-
|
179 |
-
"
|
180 |
-
|
181 |
-
|
182 |
-
"id":
|
183 |
-
datasets.Value('string'),
|
184 |
-
})
|
185 |
return datasets.DatasetInfo(
|
186 |
description=self.config.description,
|
187 |
features=features,
|
@@ -193,8 +192,7 @@ class TedLium(datasets.GeneratorBasedBuilder):
|
|
193 |
)
|
194 |
|
195 |
def _split_generators(self, dl_manager):
|
196 |
-
data_dir = dl_manager.download_and_extract(
|
197 |
-
self.config.download_url)
|
198 |
splits = []
|
199 |
for split, path in self.config.split_paths:
|
200 |
kwargs = {"filepath": os.path.join(data_dir, path)}
|
@@ -207,18 +205,22 @@ class TedLium(datasets.GeneratorBasedBuilder):
|
|
207 |
stm_dir = os.path.join(filepath, "stm")
|
208 |
# The sph directory houses the audio files in .sph format
|
209 |
sph_dir = os.path.join(filepath, "sph")
|
210 |
-
stm_files = [os.path.join(stm_dir, f) for f in os.listdir(stm_dir) if f.endswith(
|
211 |
for file in stm_files:
|
|
|
|
|
|
|
|
|
212 |
with open(file) as f:
|
213 |
for line in f:
|
214 |
line = line.strip()
|
215 |
fn, channel, speaker, start, end, label, transcript = line.split(" ", 6)
|
216 |
transcript = _maybe_trim_suffix(transcript)
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
os.path.join(sph_dir,
|
221 |
-
|
222 |
|
223 |
key = "-".join([speaker, start, end, label])
|
224 |
example = {
|
@@ -231,6 +233,15 @@ class TedLium(datasets.GeneratorBasedBuilder):
|
|
231 |
}
|
232 |
yield key, example
|
233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
def _maybe_trim_suffix(transcript):
|
235 |
# stm files for the TEDLIUM release 1 train split contain a key (enclosed in
|
236 |
# parens) at the end.
|
@@ -243,6 +254,17 @@ def _maybe_trim_suffix(transcript):
|
|
243 |
return transcript
|
244 |
|
245 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
def _parse_gender(label_str):
|
247 |
"""Parse gender string from STM "<label>" field."""
|
248 |
gender = re.split(",|_", label_str)[-1][:-1]
|
@@ -256,17 +278,3 @@ def _parse_gender(label_str):
|
|
256 |
elif gender == "M":
|
257 |
gender = "male"
|
258 |
return gender
|
259 |
-
|
260 |
-
|
261 |
-
def _extract_audio_segment(sph_path, channel, start_sec, end_sec):
|
262 |
-
"""Extracts segment of audio samples (as an ndarray) from the given path."""
|
263 |
-
with open(sph_path, "rb") as f:
|
264 |
-
segment = AudioSegment.from_file(f, format="nistsphere")
|
265 |
-
# The dataset only contains mono audio.
|
266 |
-
assert segment.channels == 1
|
267 |
-
assert channel == 1
|
268 |
-
start_ms = int(start_sec * 1000)
|
269 |
-
end_ms = int(end_sec * 1000)
|
270 |
-
segment = segment[start_ms:end_ms]
|
271 |
-
samples = np.array(segment.get_array_of_samples())
|
272 |
-
return samples
|
|
|
16 |
|
17 |
import os
|
18 |
import re
|
19 |
+
from pathlib import Path
|
20 |
|
21 |
+
import numpy as np
|
22 |
+
from pydub import AudioSegment
|
23 |
|
24 |
import datasets
|
25 |
from datasets.tasks import AutomaticSpeechRecognition
|
26 |
|
|
|
27 |
|
28 |
_LICENSE = "licensed under Creative Commons BY-NC-ND 3.0 (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en)"
|
29 |
|
30 |
+
|
31 |
class TedliumReleaseConfig(datasets.BuilderConfig):
|
32 |
+
"""BuilderConfig for a release of the TED-LIUM dataset."""
|
33 |
|
34 |
+
def __init__(self, *, url, download_url, split_paths, citation, **kwargs):
|
35 |
+
super(TedliumReleaseConfig, self).__init__(version=datasets.Version("1.0.1"), **kwargs)
|
36 |
+
self.url = url
|
37 |
+
self.download_url = download_url
|
38 |
+
# List of split, path pairs containing the relative path within the
|
39 |
+
# extracted tarball to the data for each split.
|
40 |
+
self.split_paths = split_paths
|
41 |
+
self.citation = citation
|
|
|
42 |
|
43 |
|
44 |
def _make_builder_configs():
|
45 |
+
"""Creates builder configs for all supported Tedlium dataset releases."""
|
46 |
+
release1 = TedliumReleaseConfig(
|
47 |
+
name="release1",
|
48 |
+
description="""\
|
49 |
The TED-LIUM corpus is English-language TED talks, with transcriptions,
|
50 |
sampled at 16kHz. It contains about 118 hours of speech.
|
51 |
|
|
|
53 |
licensed under Creative Commons BY-NC-ND 3.0
|
54 |
(http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en).
|
55 |
""",
|
56 |
+
citation="""\
|
57 |
@inproceedings{rousseau2012tedlium,
|
58 |
title={TED-LIUM: an Automatic Speech Recognition dedicated corpus},
|
59 |
author={Rousseau, Anthony and Del{\\'e}glise, Paul and Est{\\`e}ve, Yannick},
|
|
|
62 |
year={2012}
|
63 |
}
|
64 |
""",
|
65 |
+
url="https://www.openslr.org/7/",
|
66 |
+
download_url="http://www.openslr.org/resources/7/TEDLIUM_release1.tar.gz",
|
67 |
+
split_paths=[
|
68 |
+
(datasets.Split.TRAIN, os.path.join("TEDLIUM_release1", "train")),
|
69 |
+
(datasets.Split.VALIDATION, os.path.join("TEDLIUM_release1", "dev")),
|
70 |
+
(datasets.Split.TEST, os.path.join("TEDLIUM_release1", "test")),
|
71 |
+
],
|
72 |
+
)
|
73 |
+
|
74 |
+
release2 = TedliumReleaseConfig(
|
75 |
+
name="release2",
|
76 |
+
description="""\
|
77 |
This is the TED-LIUM corpus release 2,
|
78 |
licensed under Creative Commons BY-NC-ND 3.0
|
79 |
(http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en).
|
|
|
88 |
|
89 |
Contains 1495 talks and transcripts.
|
90 |
""",
|
91 |
+
citation="""\
|
92 |
@inproceedings{rousseau2014tedlium2,
|
93 |
title={Enhancing the {TED-LIUM} Corpus with Selected Data for Language Modeling and More {TED} Talks},
|
94 |
author={Rousseau, Anthony and Del{\\'e}glise, Paul and Est{\\`e}ve, Yannick},
|
|
|
96 |
year={2014}
|
97 |
}
|
98 |
""",
|
99 |
+
url="https://www.openslr.org/19/",
|
100 |
+
download_url="http://www.openslr.org/resources/19/TEDLIUM_release2.tar.gz",
|
101 |
+
split_paths=[
|
102 |
+
(datasets.Split.TRAIN, os.path.join("TEDLIUM_release2", "train")),
|
103 |
+
(datasets.Split.VALIDATION, os.path.join("TEDLIUM_release2", "dev")),
|
104 |
+
(datasets.Split.TEST, os.path.join("TEDLIUM_release2", "test")),
|
105 |
+
],
|
106 |
+
)
|
107 |
+
|
108 |
+
release3 = TedliumReleaseConfig(
|
109 |
+
name="release3",
|
110 |
+
description="""\
|
111 |
This is the TED-LIUM corpus release 3, licensed under Creative Commons
|
112 |
BY-NC-ND 3.0.
|
113 |
|
|
|
138 |
- the 'speaker adaptation' one, especially designed for experiments on
|
139 |
speaker adaptation.
|
140 |
""",
|
141 |
+
citation="""\
|
142 |
@inproceedings{hernandez2018tedlium3,
|
143 |
title={TED-LIUM 3: twice as much data and corpus repartition for experiments on speaker adaptation},
|
144 |
author={Hernandez, Fran{\\c{c}}ois and Nguyen, Vincent and Ghannay, Sahar and Tomashenko, Natalia and Est{\\`e}ve, Yannick},
|
|
|
148 |
organization={Springer}
|
149 |
}
|
150 |
""",
|
151 |
+
url="https://www.openslr.org/51/",
|
152 |
+
download_url="http://www.openslr.org/resources/51/TEDLIUM_release-3.tgz",
|
153 |
+
split_paths=[
|
154 |
+
(datasets.Split.VALIDATION, os.path.join("TEDLIUM_release-3", "legacy", "dev")),
|
155 |
+
(datasets.Split.TEST, os.path.join("TEDLIUM_release-3", "legacy", "test")),
|
156 |
+
# The legacy/train directory contains symlinks to "data",
|
157 |
+
# which are skipped by extraction (see above).
|
158 |
+
# Work around this by manually dereferencing the links here.
|
159 |
+
(datasets.Split.TRAIN, os.path.join("TEDLIUM_release-3", "data")),
|
160 |
+
],
|
161 |
+
)
|
162 |
+
|
163 |
+
return [release1, release2, release3]
|
|
|
164 |
|
165 |
|
166 |
class TedLium(datasets.GeneratorBasedBuilder):
|
167 |
+
"""The TED-LIUM corpus is English-language TED talks, with transcriptions, sampled at 16kHz. It contains about 118 hours of speech."""
|
168 |
|
169 |
VERSION = datasets.Version("1.1.0")
|
170 |
|
171 |
BUILDER_CONFIGS = _make_builder_configs()
|
172 |
|
173 |
def _info(self):
|
174 |
+
features = datasets.Features(
|
175 |
+
{
|
176 |
+
"audio": datasets.features.Audio(sampling_rate=16_000),
|
177 |
+
"text": datasets.Value("string"),
|
178 |
+
"speaker_id": datasets.Value("string"),
|
179 |
+
"gender": datasets.features.ClassLabel(names=["unknown", "female", "male"]),
|
180 |
+
"file": datasets.Value("string"),
|
181 |
+
"id": datasets.Value("string"),
|
182 |
+
}
|
183 |
+
)
|
|
|
|
|
|
|
184 |
return datasets.DatasetInfo(
|
185 |
description=self.config.description,
|
186 |
features=features,
|
|
|
192 |
)
|
193 |
|
194 |
def _split_generators(self, dl_manager):
|
195 |
+
data_dir = dl_manager.download_and_extract(self.config.download_url)
|
|
|
196 |
splits = []
|
197 |
for split, path in self.config.split_paths:
|
198 |
kwargs = {"filepath": os.path.join(data_dir, path)}
|
|
|
205 |
stm_dir = os.path.join(filepath, "stm")
|
206 |
# The sph directory houses the audio files in .sph format
|
207 |
sph_dir = os.path.join(filepath, "sph")
|
208 |
+
stm_files = [os.path.join(stm_dir, f) for f in os.listdir(stm_dir) if f.endswith(".stm")]
|
209 |
for file in stm_files:
|
210 |
+
# the .sph speaker file almost always has the same file name as the .stm file
|
211 |
+
speaker_file = Path(file).stem
|
212 |
+
audio_file = os.path.join(sph_dir, speaker_file + ".sph")
|
213 |
+
segment = _read_audio_segment(os.path.join(sph_dir, audio_file))
|
214 |
with open(file) as f:
|
215 |
for line in f:
|
216 |
line = line.strip()
|
217 |
fn, channel, speaker, start, end, label, transcript = line.split(" ", 6)
|
218 |
transcript = _maybe_trim_suffix(transcript)
|
219 |
+
if speaker_file != fn:
|
220 |
+
# handle the case where the stm file does not have the same file name as the transcript
|
221 |
+
speaker_file = fn
|
222 |
+
segment = _read_audio_segment(os.path.join(sph_dir, speaker_file + ".sph"))
|
223 |
+
samples = _extract_audio_segment(segment, int(channel), float(start), float(end))
|
224 |
|
225 |
key = "-".join([speaker, start, end, label])
|
226 |
example = {
|
|
|
233 |
}
|
234 |
yield key, example
|
235 |
|
236 |
+
|
237 |
+
def _read_audio_segment(sph_path):
|
238 |
+
"""Reads segment of audio samples from given sph file path"""
|
239 |
+
with open(sph_path, "rb") as f:
|
240 |
+
segment = AudioSegment.from_file(f, format="nistsphere")
|
241 |
+
assert segment.channels == 1
|
242 |
+
return segment
|
243 |
+
|
244 |
+
|
245 |
def _maybe_trim_suffix(transcript):
|
246 |
# stm files for the TEDLIUM release 1 train split contain a key (enclosed in
|
247 |
# parens) at the end.
|
|
|
254 |
return transcript
|
255 |
|
256 |
|
257 |
+
def _extract_audio_segment(segment, channel, start_sec, end_sec):
|
258 |
+
"""Extracts segment of audio samples (as an ndarray) from the given segment."""
|
259 |
+
# The dataset only contains mono audio.
|
260 |
+
assert channel == 1
|
261 |
+
start_ms = int(start_sec * 1000)
|
262 |
+
end_ms = int(end_sec * 1000)
|
263 |
+
segment = segment[start_ms:end_ms]
|
264 |
+
samples = np.array(segment.get_array_of_samples())
|
265 |
+
return samples
|
266 |
+
|
267 |
+
|
268 |
def _parse_gender(label_str):
|
269 |
"""Parse gender string from STM "<label>" field."""
|
270 |
gender = re.split(",|_", label_str)[-1][:-1]
|
|
|
278 |
elif gender == "M":
|
279 |
gender = "male"
|
280 |
return gender
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|