update readme
Browse files
README.md
CHANGED
@@ -1,64 +1,79 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-nc-3.0
|
3 |
-
---
|
4 |
-
|
5 |
## MAPLM: A Real-World Large-Scale Vision-Language Benchmark for Map and Traffic Scene Understanding
|
6 |
|
7 |
-
###
|
|
|
|
|
|
|
8 |
|
9 |
-
|
|
|
|
|
|
|
10 |
|
11 |
### Dataset Structure
|
|
|
12 |
```
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
```
|
30 |
|
31 |
-
### Input
|
32 |
|
33 |
-
The
|
34 |
|
35 |
-
|
36 |
-
|
|
|
37 |
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
|
42 |
-
|
|
|
43 |
|
44 |
-
|
|
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
|
58 |
-
###
|
59 |
|
60 |
-
|
61 |
|
|
|
62 |
```
|
63 |
@inproceedings{cao2024maplm,
|
64 |
title={MAPLM: A Real-World Large-Scale Vision-Language Benchmark for Map and Traffic Scene Understanding},
|
@@ -69,6 +84,7 @@ When using this resource, please cite:
|
|
69 |
}
|
70 |
```
|
71 |
|
|
|
72 |
```
|
73 |
@inproceedings{tang2023thma,
|
74 |
title={Thma: Tencent hd map ai system for creating hd map annotations},
|
@@ -80,5 +96,3 @@ When using this resource, please cite:
|
|
80 |
year={2023}
|
81 |
}
|
82 |
```
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
1 |
## MAPLM: A Real-World Large-Scale Vision-Language Benchmark for Map and Traffic Scene Understanding
|
2 |
|
3 |
+
### Version 2.0 - WACV 2025 LLVM-AD Challenge
|
4 |
+
|
5 |
+
**Developed by:**
|
6 |
+
Tencent, University of Illinois at Urbana-Champaign, Purdue University, University of Virginia
|
7 |
|
8 |
+
### License
|
9 |
+
This dataset is released under the [CC-BY-NC-3.0 License](https://creativecommons.org/licenses/by-nc/3.0/).
|
10 |
+
|
11 |
+
---
|
12 |
|
13 |
### Dataset Structure
|
14 |
+
|
15 |
```
|
16 |
+
data/
|
17 |
+
βββ images/
|
18 |
+
β βββ FR1/
|
19 |
+
β β βββ photo_forward.jpg
|
20 |
+
β β βββ photo_lef_back.jpg
|
21 |
+
β β βββ photo_rig_back.jpg
|
22 |
+
β β βββ point_cloud_bev.jpg
|
23 |
+
β βββ FR2/
|
24 |
+
β β βββ photo_forward.jpg
|
25 |
+
β β βββ photo_lef_back.jpg
|
26 |
+
β β βββ photo_rig_back.jpg
|
27 |
+
β β βββ point_cloud_bev.jpg
|
28 |
+
β βββ ...
|
29 |
+
βββ train_v2.json
|
30 |
+
βββ val_v2.json
|
31 |
+
βββ test_v2.json
|
32 |
```
|
33 |
|
34 |
+
### Input Data
|
35 |
|
36 |
+
The dataset includes:
|
37 |
|
38 |
+
1. **Image Views:**
|
39 |
+
- **Forward View**: A forward-facing photo of the road scene.
|
40 |
+
- **Back Left/Right Views**: Photos capturing the back left and back right perspectives.
|
41 |
|
42 |
+
Examples:
|
43 |
+
![Forward View](./data/images/FR1/photo_forward.jpg)
|
44 |
+
![Left Back View](./data/images/FR1/photo_lef_back.jpg)
|
45 |
+
![Right Back View](./data/images/FR1/photo_rig_back.jpg)
|
46 |
|
47 |
+
2. **Point Cloud (BEV):**
|
48 |
+
- A Bird's Eye View (BEV) image generated from the 3D point cloud data.
|
49 |
|
50 |
+
Example:
|
51 |
+
![BEV](./data/images/FR1/point_cloud_bev.jpg)
|
52 |
|
53 |
+
**Note:**
|
54 |
+
Participants can choose which inputs to use for the challenge. HD map annotations are not included in this dataset version. All data adhere to standards for producing HD maps.
|
55 |
|
56 |
+
---
|
57 |
+
|
58 |
+
### Challenge QAs
|
59 |
+
|
60 |
+
1. **Scene Type (SCN):** Identify the type of road scene depicted in the images.
|
61 |
+
2. **Point Cloud Quality (QLT):** Assess the quality of the point cloud data for the current road area.
|
62 |
+
3. **Intersection Detection (INT):** Determine if the main road features a crossroad, intersection, or lane change zone.
|
63 |
+
4. **Lane Count (LAN):** Count the number of lanes on the current road. (*May not apply to all cases*)
|
64 |
+
5. **Lane Description (DES):** Describe the attributes of the lanes on the current road. (*May not apply to all cases*)
|
65 |
+
6. **Scene Captioning (CAP):** Provide a detailed description of the current driving scene. (*May not apply to all cases*)
|
66 |
+
7. **Unusual Object Detection (OBJ):** Identify any unusual objects visible in the images. (*May not apply to all cases*)
|
67 |
+
8. **Lane Change Prediction (MOVE):** Predict the ego vehicle's lane change behavior. (*May not apply to all cases*)
|
68 |
+
9. **Speed Prediction (SPEED):** Predict the ego vehicle's speed behavior. (*May not apply to all cases*)
|
69 |
|
70 |
+
---
|
71 |
|
72 |
+
### Citation
|
73 |
|
74 |
+
If you use this dataset, please cite the following works:
|
75 |
|
76 |
+
#### Main Dataset Paper:
|
77 |
```
|
78 |
@inproceedings{cao2024maplm,
|
79 |
title={MAPLM: A Real-World Large-Scale Vision-Language Benchmark for Map and Traffic Scene Understanding},
|
|
|
84 |
}
|
85 |
```
|
86 |
|
87 |
+
#### HD Map Annotation System Reference:
|
88 |
```
|
89 |
@inproceedings{tang2023thma,
|
90 |
title={Thma: Tencent hd map ai system for creating hd map annotations},
|
|
|
96 |
year={2023}
|
97 |
}
|
98 |
```
|
|
|
|