## MAPLM: A Real-World Large-Scale Vision-Language Benchmark for Map and Traffic Scene Understanding ### Version 2.0 - WACV 2025 LLVM-AD Challenge **Developed by:** Tencent, University of Illinois at Urbana-Champaign, Purdue University, University of Virginia ### License This dataset is released under the [CC-BY-NC-3.0 License](https://creativecommons.org/licenses/by-nc/3.0/). --- ### Dataset Structure ``` data/ ├── images/ │ ├── FR1/ │ │ ├── photo_forward.jpg │ │ ├── photo_lef_back.jpg │ │ ├── photo_rig_back.jpg │ │ ├── point_cloud_bev.jpg │ ├── FR2/ │ │ ├── photo_forward.jpg │ │ ├── photo_lef_back.jpg │ │ ├── photo_rig_back.jpg │ │ ├── point_cloud_bev.jpg │ └── ... ├── train_v2.json ├── val_v2.json └── test_v2.json ``` ### Input Data The dataset includes: 1. **Image Views:** - **Forward View**: A forward-facing photo of the road scene. - **Back Left/Right Views**: Photos capturing the back left and back right perspectives. Examples: ![Forward View](./data/images/FR1/photo_forward.jpg) ![Left Back View](./data/images/FR1/photo_lef_back.jpg) ![Right Back View](./data/images/FR1/photo_rig_back.jpg) 2. **Point Cloud (BEV):** - A Bird's Eye View (BEV) image generated from the 3D point cloud data. Example: ![BEV](./data/images/FR1/point_cloud_bev.jpg) **Note:** Participants can choose which inputs to use for the challenge. HD map annotations are not included in this dataset version. All data adhere to standards for producing HD maps. --- ### Challenge QAs 1. **Scene Type (SCN):** Identify the type of road scene depicted in the images. 2. **Point Cloud Quality (QLT):** Assess the quality of the point cloud data for the current road area. 3. **Intersection Detection (INT):** Determine if the main road features a crossroad, intersection, or lane change zone. 4. **Lane Count (LAN):** Count the number of lanes on the current road. (*May not apply to all cases*) 5. **Lane Description (DES):** Describe the attributes of the lanes on the current road. (*May not apply to all cases*) 6. **Scene Captioning (CAP):** Provide a detailed description of the current driving scene. (*May not apply to all cases*) 7. **Unusual Object Detection (OBJ):** Identify any unusual objects visible in the images. (*May not apply to all cases*) 8. **Lane Change Prediction (MOVE):** Predict the ego vehicle's lane change behavior. (*May not apply to all cases*) 9. **Speed Prediction (SPEED):** Predict the ego vehicle's speed behavior. (*May not apply to all cases*) --- ### Citation If you use this dataset, please cite the following works: #### Main Dataset Paper: ``` @inproceedings{cao2024maplm, title={MAPLM: A Real-World Large-Scale Vision-Language Benchmark for Map and Traffic Scene Understanding}, author={Cao, Xu and Zhou, Tong and Ma, Yunsheng and Ye, Wenqian and Cui, Can and Tang, Kun and Cao, Zhipeng and Liang, Kaizhao and Wang, Ziran and Rehg, James M and others}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={21819--21830}, year={2024} } ``` #### HD Map Annotation System Reference: ``` @inproceedings{tang2023thma, title={Thma: Tencent hd map ai system for creating hd map annotations}, author={Tang, Kun and Cao, Xu and Cao, Zhipeng and Zhou, Tong and Li, Erlong and Liu, Ao and Zou, Shengtao and Liu, Chang and Mei, Shuqi and Sizikova, Elena and others}, booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, volume={37}, number={13}, pages={15585--15593}, year={2023} } ```