Levi980623 commited on
Commit
33bd801
1 Parent(s): 4ef0b05

Upload Ros_term.py

Browse files
Files changed (1) hide show
  1. Ros_term.py +101 -0
Ros_term.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ from huggingface_hub import hf_hub_url
3
+ import datasets
4
+ import os
5
+
6
+ _VERSION = datasets.Version("0.0.2")
7
+
8
+ _DESCRIPTION = "TODO"
9
+ _HOMEPAGE = "TODO"
10
+ _LICENSE = "TODO"
11
+ _CITATION = "TODO"
12
+
13
+ _FEATURES = datasets.Features(
14
+ {
15
+ "image": datasets.Image(),
16
+ "conditioning_image": datasets.Image(),
17
+ "text": datasets.Value("string"),
18
+ },
19
+ )
20
+
21
+ METADATA_URL = hf_hub_url(
22
+ "Levi980623/Ros_term",
23
+ filename="train.jsonl",
24
+ repo_type="dataset",
25
+ )
26
+
27
+ IMAGES_URL = hf_hub_url(
28
+ "Levi980623/Ros_term",
29
+ filename="images.zip",
30
+ repo_type="dataset",
31
+ )
32
+
33
+ CONDITIONING_IMAGES_URL = hf_hub_url(
34
+ "Levi980623/Ros_term",
35
+ filename="conditioning_images.zip",
36
+ repo_type="dataset",
37
+ )
38
+
39
+ _DEFAULT_CONFIG = datasets.BuilderConfig(name="default", version=_VERSION)
40
+
41
+
42
+ class Ros_term(datasets.GeneratorBasedBuilder):
43
+ BUILDER_CONFIGS = [_DEFAULT_CONFIG]
44
+ DEFAULT_CONFIG_NAME = "default"
45
+
46
+ def _info(self):
47
+ return datasets.DatasetInfo(
48
+ description=_DESCRIPTION,
49
+ features=_FEATURES,
50
+ supervised_keys=None,
51
+ homepage=_HOMEPAGE,
52
+ license=_LICENSE,
53
+ citation=_CITATION,
54
+ )
55
+
56
+ def _split_generators(self, dl_manager):
57
+ metadata_path = dl_manager.download(METADATA_URL)
58
+ images_dir = dl_manager.download_and_extract(IMAGES_URL)
59
+ conditioning_images_dir = dl_manager.download_and_extract(
60
+ CONDITIONING_IMAGES_URL
61
+ )
62
+
63
+ return [
64
+ datasets.SplitGenerator(
65
+ name=datasets.Split.TRAIN,
66
+ # These kwargs will be passed to _generate_examples
67
+ gen_kwargs={
68
+ "metadata_path": metadata_path,
69
+ "images_dir": images_dir,
70
+ "conditioning_images_dir": conditioning_images_dir,
71
+ },
72
+ ),
73
+ ]
74
+
75
+ def _generate_examples(self, metadata_path, images_dir, conditioning_images_dir):
76
+ metadata = pd.read_json(metadata_path, lines=True)
77
+
78
+ for _, row in metadata.iterrows():
79
+ text = row["text"]
80
+
81
+ image_path = row["image"]
82
+ image_path = os.path.join(images_dir, image_path)
83
+ image = open(image_path, "rb").read()
84
+
85
+ conditioning_image_path = row["conditioning_image"]
86
+ conditioning_image_path = os.path.join(
87
+ conditioning_images_dir, row["conditioning_image"]
88
+ )
89
+ conditioning_image = open(conditioning_image_path, "rb").read()
90
+
91
+ yield row["image"], {
92
+ "text": text,
93
+ "image": {
94
+ "path": image_path,
95
+ "bytes": image,
96
+ },
97
+ "conditioning_image": {
98
+ "path": conditioning_image_path,
99
+ "bytes": conditioning_image,
100
+ },
101
+ }