Datasets:
File size: 6,973 Bytes
ea3a10e 73d6df6 2220b47 ea3a10e 73d6df6 ea3a10e 67bd7ad ea3a10e 67bd7ad ea3a10e 73d6df6 ea3a10e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""macocu_parallel"""
import os
import csv
import datasets
_CITATION = """\
@inproceedings{banon2022macocu,
title={MaCoCu: Massive collection and curation of monolingual and bilingual data: focus on under-resourced languages},
author={Ban{\'o}n, Marta and Espla-Gomis, Miquel and Forcada, Mikel L and Garc{\'\i}a-Romero, Cristian and Kuzman, Taja and Ljube{\v{s}}i{\'c}, Nikola and van Noord, Rik and Sempere, Leopoldo Pla and Ram{\'\i}rez-S{\'a}nchez, Gema and Rupnik, Peter and others},
booktitle={23rd Annual Conference of the European Association for Machine Translation, EAMT 2022},
pages={303--304},
year={2022},
organization={European Association for Machine Translation}
}
"""
_DESCRIPTION = """\
The MaCoCu parallel dataset is an English-centric collection of 11
parallel corpora including the following languages: Albanian,
Bulgarian, Bosnian, Croatian, Icelandic, Macedonian, Maltese,
Montenegrin, Serbian, Slovenian, and Turkish. These corpora have
been automatically crawled from national and generic top-level
domains (for example, ".hr" for croatian, or ".is" for icelandic);
then, a parallel curation pipeline has been applied to produce
the final data (see https://github.com/bitextor/bitextor).
"""
_URL = {
"evaluation": "https://object.pouta.csc.fi/Tatoeba-Challenge-devtest/test.tar",
"development": "https://object.pouta.csc.fi/Tatoeba-Challenge-devtest/dev.tar",
}
_LanguagePairs = [ "en-is" ]
#_LanguagePairs = [ "en-bg", "en-is", "en-sq", "en-mt", "en-mk", "en-sl", "en-tr" ]
#_LanguagePairs = [ "en-bs", "en-bg", "en-is", "en-hr", "en-sq", "en-mt", "en-mk", "en-cnr", "en-sr", "en-sl", "en-tr" ]
_LICENSE = "cc0"
_HOMEPAGE = "https://macocu.eu"
class macocuConfig(datasets.BuilderConfig):
"""BuilderConfig for macocu_parallel"""
def __init__(self, language_pair, **kwargs):
super().__init__(**kwargs)
"""
Args:
language_pair: language pair to be loaded
**kwargs: keyword arguments forwarded to super.
"""
self.language_pair = language_pair
class MaCoCu_parallel(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIG_CLASS = macocuConfig
BUILDER_CONFIGS = [
macocuConfig(name=pair, description=_DESCRIPTION, language_pair=pair )
for pair in _LanguagePairs
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({
"src_url": datasets.Value("string"),
"trg_url": datasets.Value("string"),
"src_text": datasets.Value("string"),
"trg_text": datasets.Value("string"),
"bleualign_score": datasets.Value("string"),
"src_deferred_hash": datasets.Value("string"),
"trg_deferred_hash": datasets.Value("string"),
"src_paragraph_id": datasets.Value("string"),
"trg_paragraph_id": datasets.Value("string"),
"src_doc_title": datasets.Value("string"),
"trg_doc_title": datasets.Value("string"),
"src_crawl_date": datasets.Value("string"),
"trg_crawl_date": datasets.Value("string"),
"src_file_type": datasets.Value("string"),
"trg_file_type": datasets.Value("string"),
"src_boilerplate": datasets.Value("string"),
"trg_boilerplate": datasets.Value("string"),
"src_heading_html_tag": datasets.Value("string"),
"trg_heading_html_tag": datasets.Value("string"),
"bifixer_hash": datasets.Value("string"),
"bifixer_score": datasets.Value("string"),
"bicleaner_ai_score": datasets.Value("string"),
"biroamer_entities_detected": datasets.Value("string"),
"dsi": datasets.Value("string"),
"translation_direction": datasets.Value("string"),
"en_document_level_variant": datasets.Value("string"),
"domain_en": datasets.Value("string"),
"en_domain_level_variant": datasets.Value("string")
}),
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE
)
def _split_generators(self, dl_manager):
lang_pair = self.config.language_pair
path = os.path.join("data", f"{lang_pair}.macocuv2.tsv")
data_file = dl_manager.download_and_extract({"data_file": path})
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs=data_file)]
def _generate_examples(self, data_file):
"""Yields examples."""
with open(data_file, encoding="utf-8") as f:
reader = csv.reader(f, delimiter="\t", quotechar='"')
for id_, row in enumerate(reader):
if id_ == 0:
continue
yield id_, {
"src_url": row[0],
"trg_url": row[1],
"src_text": row[2],
"trg_text": row[3],
"bleualign_score": row[4],
"src_deferred_hash": row[5],
"trg_deferred_hash": row[6],
"src_paragraph_id": row[7],
"trg_paragraph_id": row[8],
"src_doc_title": row[9],
"trg_doc_title": row[10],
"src_crawl_date": row[11],
"trg_crawl_date": row[12],
"src_file_type": row[13],
"trg_file_type": row[14],
"src_boilerplate": row[15],
"trg_boilerplate": row[16],
"src_heading_html_tag": row[17],
"trg_heading_html_tag": row[18],
"bifixer_hash": row[19],
"bifixer_score": row[20],
"bicleaner_ai_score": row[21],
"biroamer_entities_detected": row[22],
"dsi": row[23],
"translation_direction": row[24],
"en_document_level_variant": row[25],
"domain_en": row[26],
"en_domain_level_variant": row[27]
}
|