mikonvergence
commited on
Create extras/thumbnail_s2.py
Browse files- extras/thumbnail_s2.py +68 -0
extras/thumbnail_s2.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
NOTE: Major TOM standard does not require any specific type of thumbnail to be computed.
|
3 |
+
|
4 |
+
Instead these are shared as optional help since this is how the Core dataset thumbnails have been computed.
|
5 |
+
"""
|
6 |
+
|
7 |
+
from rasterio.io import MemoryFile
|
8 |
+
from PIL import Image
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
def s2l2a_thumbnail(B04, B03, B02, gain=1.3, gamma=0.6):
|
12 |
+
"""
|
13 |
+
Takes B04, B03, B02 numpy arrays along with the corresponding NODATA values (default is -32768.0)
|
14 |
+
|
15 |
+
Returns a numpy array with the thumbnail
|
16 |
+
"""
|
17 |
+
|
18 |
+
# concatenate
|
19 |
+
thumb = np.stack([B04, B03, B02], -1)
|
20 |
+
|
21 |
+
# apply gain & gamma
|
22 |
+
thumb = gain*((thumb/10_000)**gamma)
|
23 |
+
|
24 |
+
return (thumb.clip(0,1)*255).astype(np.uint8)
|
25 |
+
|
26 |
+
def s2l2a_thumbnail_from_datarow(datarow):
|
27 |
+
"""
|
28 |
+
Takes a datarow directly from one of the data parquet files
|
29 |
+
|
30 |
+
Returns a PIL Image
|
31 |
+
"""
|
32 |
+
|
33 |
+
# red
|
34 |
+
with MemoryFile(datarow['B04'][0].as_py()) as mem_f:
|
35 |
+
with mem_f.open(driver='GTiff') as f:
|
36 |
+
B04=f.read().squeeze()
|
37 |
+
B04_NODATA = f.nodata
|
38 |
+
|
39 |
+
# green
|
40 |
+
with MemoryFile(datarow['B03'][0].as_py()) as mem_f:
|
41 |
+
with mem_f.open(driver='GTiff') as f:
|
42 |
+
B03=f.read().squeeze()
|
43 |
+
B03_NODATA = f.nodata
|
44 |
+
|
45 |
+
# blue
|
46 |
+
with MemoryFile(datarow['B02'][0].as_py()) as mem_f:
|
47 |
+
with mem_f.open(driver='GTiff') as f:
|
48 |
+
B02=f.read().squeeze()
|
49 |
+
B02_NODATA = f.nodata
|
50 |
+
|
51 |
+
img = s2l2a_thumbnail(B04,B03,B02)
|
52 |
+
|
53 |
+
return Image.fromarray(img)
|
54 |
+
|
55 |
+
if __name__ == '__main__':
|
56 |
+
from fsspec.parquet import open_parquet_file
|
57 |
+
import pyarrow.parquet as pq
|
58 |
+
|
59 |
+
print('[example run] reading file from HuggingFace...')
|
60 |
+
url = "https://huggingface.co/datasets/Major-TOM/Core-S2L2A/resolve/main/images/part_01000.parquet"
|
61 |
+
with open_parquet_file(url, columns = ["B04", "B03", "B02"]) as f:
|
62 |
+
with pq.ParquetFile(f) as pf:
|
63 |
+
first_row_group = pf.read_row_group(1, columns = ["B04", "B03", "B02"])
|
64 |
+
|
65 |
+
print('[example run] computing the thumbnail...')
|
66 |
+
thumbnail = s2l2a_thumbnail_from_datarow(first_row_group)
|
67 |
+
|
68 |
+
thumbnail.save('example_thumbnail.png', format = 'PNG')
|